Featured Research

from universities, journals, and other organizations

Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes

Date:
March 31, 2011
Source:
Massachusetts Institute of Technology
Summary:
Many airplane manufacturers have started building planes from advanced composite materials, which consist of high-strength fibers, such as carbon or glass, embedded in a plastic or metal matrix. Such materials are stronger and more lightweight than aluminum, but they are also more difficult to inspect for damage. A professor of aeronautics and astronautics has devised a new way to detect that internal damage, using a simple handheld device and heat-sensitive camera.

Infrared themographic image of a nanoengineered composite heated via electrical probes. The scalebar of colors is degrees Celsius. The MIT logo has been machined into the composite, and the hot and cool spots around the logo are caused by the thermal-electrical interactions of the resistive heating and the logo "damage" to the composite. The enhanced thermographic sensing described in the paper works in the same way.
Credit: Roberto Guzmán de Villoria, MIT

In recent years, many airplane manufacturers have started building their planes from advanced composite materials, which consist of high-strength fibers, such as carbon or glass, embedded in a plastic or metal matrix. Such materials are stronger and more lightweight than aluminum, but they are also more difficult to inspect for damage, because their surfaces usually don't reveal underlying problems.

Related Articles


"With aluminum, if you hit it, there's a dent there. With a composite, oftentimes if you hit it, there's no surface damage, even though there may be internal damage," says Brian L. Wardle, associate professor of aeronautics and astronautics.

Wardle and his colleagues have devised a new way to detect that internal damage, using a simple handheld device and heat-sensitive camera. Their approach also requires engineering the composite materials to include carbon nanotubes, which generate the heat necessary for the test.

Their approach, described in the March 22 online edition of the journal Nanotechnology, could allow airlines to inspect their planes much more quickly, Wardle says. This project is part of a multiyear, aerospace-industry-funded effort to improve the mechanical properties of existing advanced aerospace-grade composites. The U.S. Air Force and Navy are also interested in the technology, and Wardle is working with them to develop it for use in their aircraft and vessels.

Uncovering damage

Advanced composite materials are commonly found not only in aircraft, but also cars, bridges and wind-turbine blades, Wardle says.

One method that inspectors now use to reveal damage in advanced composite materials is infrared thermography, which detects infrared radiation emitted when the surface is heated. In an advanced composite material, any cracks or delamination (separation of the layers that form the composite material) will redirect the flow of heat. That abnormal flow pattern can be seen with a heat-sensitive (thermographic) camera.

This is effective but cumbersome because it requires large heaters to be placed next to the surface, Wardle says. With his new approach, carbon nanotubes are incorporated into the composite material. When a small electric current is applied to the surface, the nanotubes heat up, which eliminates the need for any external heat source. The inspector can see the damage with a thermographic camera or goggles.

"It's a very clever way to utilize the properties of carbon nanotubes to deliver that thermal energy, from the inside out," says Douglas Adams, associate professor of mechanical engineering at Purdue University. Adams, who was not involved in the research, notes that two fundamental challenges remain: developing a practical way to manufacture large quantities of the new material, and ensuring that the addition of nanotubes does not detract from the material's primary function of withstanding heavy loads.

The new carbon nanotube hybrid materials that Wardle is developing have so far shown better mechanical properties, such as strength and toughness, than existing advanced composites.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roberto Guzmán de Villoria, Namiko Yamamoto, Antonio Miravete, Brian L Wardle. Multi-physics damage sensing in nano-engineered structural composites. Nanotechnology, 2011; 22 (18): 185502 DOI: 10.1088/0957-4484/22/18/185502

Cite This Page:

Massachusetts Institute of Technology. "Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes." ScienceDaily. ScienceDaily, 31 March 2011. <www.sciencedaily.com/releases/2011/03/110325111850.htm>.
Massachusetts Institute of Technology. (2011, March 31). Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/03/110325111850.htm
Massachusetts Institute of Technology. "Seeing below the surface: Engineers devise a new way to inspect advanced materials used to build airplanes." ScienceDaily. www.sciencedaily.com/releases/2011/03/110325111850.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) — With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) — A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) — Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins