Featured Research

from universities, journals, and other organizations

Taming the flame: Electrical wave 'blaster' could provide new way to extinguish fires

Date:
March 28, 2011
Source:
American Chemical Society
Summary:
An exciting discovery could underpin a new genre of fire-fighting devices, including sprinkler systems that suppress fires not with water, but with zaps of electric current, without soaking and irreparably damaging the contents of a home, business, or other structure.

A curtain of flame halts firefighters trying to rescue a family inside a burning home. One with a special backpack steps to the front, points a wand at the flame, and shoots a beam of electricity that opens a path through the flame for the others to pass and lead the family to safety.

Scientists have described a discovery that could underpin a new genre of fire-fighting devices, including sprinkler systems that suppress fires not with water, but with zaps of electric current, without soaking and irreparably damaging the contents of a home, business, or other structure. Reporting on March 27 at the 241st National Meeting & Exposition of the American Chemical Society (ACS), Ludovico Cademartiri, Ph.D., and his colleagues in the group of George M. Whitesides, Ph.D., at Harvard University, picked up on a 200-year-old observation that electricity can affect the shape of flames, making flames bend, twist, turn, flicker, and even snuffing them out. However, precious little research had been done over the years on the phenomenon.

"Controlling fires is an enormously difficult challenge," said Cademartiri, who reported on the research. "Our research has shown that by applying large electric fields we can suppress flames very rapidly. We're very excited about the results of this relatively unexplored area of research."

Firefighters currently use water, foam, powder and other substances to extinguish flames. The new technology could allow them to put out fires remotely -- without delivering material to the flame -- and suppress fires from a distance. The technology could also save water and avoid the use of fire-fighting materials that could potentially harm the environment, the scientists suggest.

In the new study, they connected a powerful electrical amplifier to a wand-like probe and used the device to shoot beams of electricity at an open flame more than a foot high. Almost instantly, the flame was snuffed out. Much to their fascination, it worked time and again.

The device consisted of a 600-watt amplifier, or about the same power as a high-end car stereo system. However, Cademartiri believes that a power source with only a tenth of this wattage could have similar flame-suppressing effect. That could be a boon to firefighters, since it would enable use of portable flame-tamer devices, which perhaps could be hand-carried or fit into a backpack.

But how does it work? Cademartiri acknowledged that the phenomenon is complex with several effects occurring simultaneously. Among these effects, it appears that carbon particles, or soot, generated in the flame are key for its response to electric fields. Soot particles can easily become charged. The charged particles respond to the electric field, affecting the stability of flames, he said.

"Combustion is first and foremost a chemical reaction -- arguably one of the most important -- but it's been somewhat neglected by most of the chemical community," said Cademartiri. "We're trying to get a more complete picture of this very complex interaction."

Cademartiri envisions that futuristic electrical devices based on the phenomenon could be fixed on the ceilings of buildings or ships, similar to stationary water sprinklers now in use. Alternatively, firefighters might carry the flame-tamer in the form of a backpack and distribute the electricity to fires using a handheld wand. Such a device could be used, for instance, to make a path for firefighters to enter a fire or create an escape path for people to exit, he said.

The system shows particular promise for fighting fires in enclosed quarters, such as armored trucks, planes, and submarines. Large forest fires, which spread over much larger areas, are not as suitable for the technique, he noted.

Cademartiri also reported how he and his colleagues found that electrical waves can control the heat and distribution of flames. As a result, the technology could potentially improve the efficiency of a wide variety of technologies that involve controlled combustion, including automobile engines, power plants, and welding and cutting torches, he said.

The Defense Advanced Research Projects Agency (U.S. Department of Defense) and the U.S. Department of Energy funded this study.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Taming the flame: Electrical wave 'blaster' could provide new way to extinguish fires." ScienceDaily. ScienceDaily, 28 March 2011. <www.sciencedaily.com/releases/2011/03/110327191034.htm>.
American Chemical Society. (2011, March 28). Taming the flame: Electrical wave 'blaster' could provide new way to extinguish fires. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/03/110327191034.htm
American Chemical Society. "Taming the flame: Electrical wave 'blaster' could provide new way to extinguish fires." ScienceDaily. www.sciencedaily.com/releases/2011/03/110327191034.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins