Featured Research

from universities, journals, and other organizations

Physicists create tap-proof waves

Date:
April 4, 2011
Source:
Vienna University of Technology
Summary:
Scientists in Austria have developed a method to steer waves on precisely defined trajectories, without any loss. This way, sound waves could be sent directly to a target, avoiding possible eavesdroppers.

Waves go directly from the transmitter to the receiver -- avoiding an eavesdropper.
Credit: Image courtesy of Vienna University of Technology

Scientists at the Vienna University of Technology (TU Vienna) have developed a method to steer waves on precisely defined trajectories, without any loss. This way, sound waves could be sent directly to a target, avoiding possible eavesdroppers.

Tossing a ball to someone without anyone else being able to catch it is simple. Calling out to someone without anyone else hearing it is much harder. There seems to be a fundamental difference between waves and solid objects: a ball moves along a straight trajectory, whereas waves spread into all directions simultaneously. Quantum physicists at the Vienna University of Technology are proposing a new method to let waves travel on simple, straight trajectories. Applying this idea to acoustic waves, it would be possible to communicate with a person at the other side of a room without anyone else being able to hear anything.

The findings are published in the journal Physical Review Letters.

The close connection between particles and waves is well known from quantum physics -- and indeed, quantum physics was the starting point of this research project. "Initially, we were working on quantum effects in semiconductors. But our results can just as well be applied to acoustic or optical waves," Professor Stefan Rotter explains. He developed the new method to control waves together with Florian Libisch and Philipp Ambichl. So far, the concept has only been tested in extensive computer simulations, but all the technology necessary to do experiments already exists. Professor Rotter is confident that the theories will soon be put to the test; "We have already contacted experimentalists, and we are hoping to see practical applications of our work soon."

Rubber Balls are Tap-proof

Using the mathematical method developed at the TU Vienna, waves can be precisely tailored in such a way that they move along a designated line. Anyone who stays off this line will never be reached by the wave and can therefore never observe it. This way, a sound wave can be guided into a room, bounce off the walls like a rubber ball and leave the room again through the other door. This is not only useful to keep the wave away from eavesdroppers and microphones, it also helps to save energy. Eventually, all the wave's energy is deposited exactly where it is supposed to, and not in regions where it cannot be used anyway.

Mathematical Concepts for Guiding Waves

Waves can spread in various ways, depending on the surroundings -- this can be tested in concert halls. The shape and texture of the walls or play an important role, just like the roughness of the floor.

"In the theoretical model, the behavior of the wave is described by a scattering matrix -- a mathematical object that characterizes wave transport," Florian Libisch explains.

In the experiment, this scattering matrix has to be measured first -- for instance, by transmitting several reference signals prior to the actual message. The new wave guiding procedure then determines how the wave has to be tuned to keep it on the predetermined path. The physicists from the TU Vienna are convinced that there is a broad range of possible applications. In addition to energy saving and tap-proof transmission of data, the method can also be used to concentrate waves at a particular region in space.

"This could be useful in radiation therapy, where the energy of the wave should be dissipated in a tumor, and leave the surrounding tissue unaffected," Florian Libisch says.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan Rotter, Philipp Ambichl, Florian Libisch. Generating Particlelike Scattering States in Wave Transport. Physical Review Letters, 2011; 106 (12) DOI: 10.1103/PhysRevLett.106.120602

Cite This Page:

Vienna University of Technology. "Physicists create tap-proof waves." ScienceDaily. ScienceDaily, 4 April 2011. <www.sciencedaily.com/releases/2011/04/110404084436.htm>.
Vienna University of Technology. (2011, April 4). Physicists create tap-proof waves. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/04/110404084436.htm
Vienna University of Technology. "Physicists create tap-proof waves." ScienceDaily. www.sciencedaily.com/releases/2011/04/110404084436.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins