Featured Research

from universities, journals, and other organizations

Resistance to anti-estrogen therapy in breast cancer due to natural cell response

Date:
April 4, 2011
Source:
Georgetown University Medical Center
Summary:
Most breast cancers are fueled by estrogen, and anti-estrogenic agents often work for a time to control the cancers. But many of these cancers become resistant to the drugs for reasons that are not understood, leaving patients with limited treatment options. Now researchers say that this resistance appears to be due to a natural stress response in cells, and that the biochemical molecules involved in this response might prove to be a new drug target.

Most breast cancers are fueled by estrogen, and anti-estrogenic agents often work for a time to control the cancers. But many of these cancers become resistant to the drugs for reasons that are not understood, leaving patients with limited treatment options.

Related Articles


Now researchers at the Georgetown Lombardi Comprehensive Cancer Center, a part of Georgetown University Medical Center (GUMC), say that this resistance appears to be due to a natural stress response in cells, and that the biochemical molecules involved in this response might prove to be a new drug target. They reported their findings at the American Association for Cancer Research (AACR) 102nd Annual Meeting 2011 in Orlando, Florida.

They found that breast cancer cells protect themselves against two anti-estrogen drugs (Tamoxifen and Faslodex) by hijacking and switching on a biological process inside the cells that is normally used when proteins are produced that don't have the right shape.

It had not been known, before this study, that this program -- the "unfolded protein response" or UPR -- could be triggered when breast cancer cells are "attacked" by anti-estrogen drugs, says the study's lead investigator, Ayesha Shajahan, Ph.D., an oncology researcher instructor and researcher in the laboratory of Robert Clarke, Ph.D., D.Sc., Dean for Research at GUMC. Clarke will be presenting the results at AACR.

If a UPR is activated, a cell can do one of two things, Shajahan says: it can turn on a pro-survival pathway or it can turn on a process that ultimately destroys the cell. The cells they studied all chose to "man the forts" to survive. They hunker down and wait out the attack, a tactic that allows the cell to resist anti-cancer treatment.

"We found that anti-estrogen resistant cancer cells are much more likely to turn on the pro-survival pathway than are cells that are sensitive to estrogen," says Shajahan.

They also found that anti-estrogen resistant breast cancer cells over-express the X-Box Binding Protein (XBP1), which turns on UPR signaling, and that specific resistance to Faslodex (Fulvestrant) occurs because of increased levels of over-expression of a XBP1 subtype, XBP1(s).

The study was funded by the Department of Defense Idea Award BC073977 to Clarke. The authors report having no personal financial interests related to the study.


Story Source:

The above story is based on materials provided by Georgetown University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Georgetown University Medical Center. "Resistance to anti-estrogen therapy in breast cancer due to natural cell response." ScienceDaily. ScienceDaily, 4 April 2011. <www.sciencedaily.com/releases/2011/04/110404131456.htm>.
Georgetown University Medical Center. (2011, April 4). Resistance to anti-estrogen therapy in breast cancer due to natural cell response. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2011/04/110404131456.htm
Georgetown University Medical Center. "Resistance to anti-estrogen therapy in breast cancer due to natural cell response." ScienceDaily. www.sciencedaily.com/releases/2011/04/110404131456.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins