Featured Research

from universities, journals, and other organizations

Are we only a hop, skip and jump away from controlled molecular motion?

Date:
April 10, 2011
Source:
Tyndall National Institute
Summary:
Scientists may very well be a hop, skip and jump away from controlled molecular motion, according to a new study. Controlling how molecules move on surfaces could be the key to more potent drugs that block the attachment of viruses to cells, and will also speed development of new materials for electronics and energy applications.

The mechanism of molecular motion changes as the environment changes; in this case, due to competition from free receptors (blue) in solution.
Credit: © Nature Chemistry. A. Perl, A.

Scientists may very well be a hop, skip and jump away from controlled molecular motion, according to a study in this month's Nature Chemistry.

Controlling how molecules move on surfaces could be the key to more potent drugs that block the attachment of viruses to cells, and will also speed development of new materials for electronics and energy applications. The study is the culmination of a EU-funded collaboration between Tyndall National Institute, UCC researcher Dr. Damien Thompson and colleagues at University of Twente in the Netherlands. Dr. Thompson performed computer simulations that enabled a greater understanding of how two-legged molecules move along patterned surfaces, in a kind of molecular hopscotch.

Widespread industrial uptake of nanotechnology requires cheap, easy and robust solutions that allow manipulation of matter at the smallest scales and so a key enabling feature will be the ability to move material around molecule by molecule. One of the major difficulties is the very different physics that operates at the scale of atoms and molecules; water, for example, feels more like treacle to a molecule, and molecules tend to huddle and stick together due to microscopic forces between their atoms. Dr. Thompson explains: "The experiments performed by the group at Twente were very elegant. They involved making two-legged molecules and using a fluorescence microscope to watch how they move along a wet surface. The molecules are hydrophobic, meaning they don't like water, and the surface was pockmarked with hydrophobic cavities so a weak glueing interaction, based on a mutual dislike of water, drives the interaction between the molecules and the surface.

While the energetics of this type of interaction was worked out over a decade ago by George Whitesides's group at Harvard, it's usefulness for materials development was limited because little was known until now on the paths that the molecules take."

Because the molecules have multiple legs, they display a surprisingly rich behaviour at the surface, beyond simply attaching/detaching, with Dr. Thompson's computer simulations complementing the experiments and showing the different mechanisms by which the molecules move. The motion switches from walking to hopping to flying, as the environment changes.

Dr. Thompson continues: "Access to high performance computing facilities enabled us to model the different pathways and aid interpretation of the microscopy results. We ran most of the simulations on our own Science Foundation Ireland-supported computing clusters at Tyndall, and also did a few larger-scale calculations at the Irish Center for High End Computing. It's an exciting time for research as experiments and simulations are finally on the same page; the experiments can finally drill down far enough to see molecule-scale features while advances in computing mean we can routinely model systems composed of hundreds of thousands, and even millions, of atoms."


Story Source:

The above story is based on materials provided by Tyndall National Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrαs Perl, Alberto Gomez-Casado, Damien Thompson, Henk H. Dam, Pascal Jonkheijm, David N. Reinhoudt, Jurriaan Huskens. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chemistry, 2011; 3 (4): 317 DOI: 10.1038/nchem.1005

Cite This Page:

Tyndall National Institute. "Are we only a hop, skip and jump away from controlled molecular motion?." ScienceDaily. ScienceDaily, 10 April 2011. <www.sciencedaily.com/releases/2011/04/110408163443.htm>.
Tyndall National Institute. (2011, April 10). Are we only a hop, skip and jump away from controlled molecular motion?. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/04/110408163443.htm
Tyndall National Institute. "Are we only a hop, skip and jump away from controlled molecular motion?." ScienceDaily. www.sciencedaily.com/releases/2011/04/110408163443.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins