Featured Research

from universities, journals, and other organizations

Are we only a hop, skip and jump away from controlled molecular motion?

Date:
April 10, 2011
Source:
Tyndall National Institute
Summary:
Scientists may very well be a hop, skip and jump away from controlled molecular motion, according to a new study. Controlling how molecules move on surfaces could be the key to more potent drugs that block the attachment of viruses to cells, and will also speed development of new materials for electronics and energy applications.

The mechanism of molecular motion changes as the environment changes; in this case, due to competition from free receptors (blue) in solution.
Credit: © Nature Chemistry. A. Perl, A.

Scientists may very well be a hop, skip and jump away from controlled molecular motion, according to a study in this month's Nature Chemistry.

Controlling how molecules move on surfaces could be the key to more potent drugs that block the attachment of viruses to cells, and will also speed development of new materials for electronics and energy applications. The study is the culmination of a EU-funded collaboration between Tyndall National Institute, UCC researcher Dr. Damien Thompson and colleagues at University of Twente in the Netherlands. Dr. Thompson performed computer simulations that enabled a greater understanding of how two-legged molecules move along patterned surfaces, in a kind of molecular hopscotch.

Widespread industrial uptake of nanotechnology requires cheap, easy and robust solutions that allow manipulation of matter at the smallest scales and so a key enabling feature will be the ability to move material around molecule by molecule. One of the major difficulties is the very different physics that operates at the scale of atoms and molecules; water, for example, feels more like treacle to a molecule, and molecules tend to huddle and stick together due to microscopic forces between their atoms. Dr. Thompson explains: "The experiments performed by the group at Twente were very elegant. They involved making two-legged molecules and using a fluorescence microscope to watch how they move along a wet surface. The molecules are hydrophobic, meaning they don't like water, and the surface was pockmarked with hydrophobic cavities so a weak glueing interaction, based on a mutual dislike of water, drives the interaction between the molecules and the surface.

While the energetics of this type of interaction was worked out over a decade ago by George Whitesides's group at Harvard, it's usefulness for materials development was limited because little was known until now on the paths that the molecules take."

Because the molecules have multiple legs, they display a surprisingly rich behaviour at the surface, beyond simply attaching/detaching, with Dr. Thompson's computer simulations complementing the experiments and showing the different mechanisms by which the molecules move. The motion switches from walking to hopping to flying, as the environment changes.

Dr. Thompson continues: "Access to high performance computing facilities enabled us to model the different pathways and aid interpretation of the microscopy results. We ran most of the simulations on our own Science Foundation Ireland-supported computing clusters at Tyndall, and also did a few larger-scale calculations at the Irish Center for High End Computing. It's an exciting time for research as experiments and simulations are finally on the same page; the experiments can finally drill down far enough to see molecule-scale features while advances in computing mean we can routinely model systems composed of hundreds of thousands, and even millions, of atoms."


Story Source:

The above story is based on materials provided by Tyndall National Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrαs Perl, Alberto Gomez-Casado, Damien Thompson, Henk H. Dam, Pascal Jonkheijm, David N. Reinhoudt, Jurriaan Huskens. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chemistry, 2011; 3 (4): 317 DOI: 10.1038/nchem.1005

Cite This Page:

Tyndall National Institute. "Are we only a hop, skip and jump away from controlled molecular motion?." ScienceDaily. ScienceDaily, 10 April 2011. <www.sciencedaily.com/releases/2011/04/110408163443.htm>.
Tyndall National Institute. (2011, April 10). Are we only a hop, skip and jump away from controlled molecular motion?. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/04/110408163443.htm
Tyndall National Institute. "Are we only a hop, skip and jump away from controlled molecular motion?." ScienceDaily. www.sciencedaily.com/releases/2011/04/110408163443.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins