Featured Research

from universities, journals, and other organizations

World's smallest wedding rings: Interlocking rings of DNA visible through scanning force microscope

Date:
April 12, 2011
Source:
Goethe University Frankfurt
Summary:
DNA nanotechnology makes use of the ability of natural DNA strains' capacity for self asssembly. Researchers in Germany were able to create two rings of DNA only 18 nanometers in size, and to interlock them like two links in a chain. One of the researchers, who got married during the time he was working on the nano-rings, believes that they are probably the world's smallest wedding rings.

The world's smallest wedding rings are built up by two interlocked DNA-strands.
Credit: Alexander Heckel

DNA nanotechnology makes use of the ability of natural DNA strains' capacity for self asssembly. Prof. Alexander Heckel and his doctoral student Thorsten Schmidt of Goethe University were able to create two rings of DNA only 18 nanometers in size, and to interlock them like two links in a chain. Such a structure is called catenan, a term derived from the Latin word catena (chain). Schmidt, who got married during the time he was working on the nano-rings, believes that they are probably the world's smallest wedding rings.

From a scientific perspective, the structure is a milestone in the field of DNA nanotechnology, since the two rings of the catenan are, as opposed to the majority of the DNA nano-architectures that have already been realized, not fixed formations, but -- depending on the environmental conditions -- freely pivotable. They are therefore suitable as components of molecular machines or of a molecular motor.

"We still have a long way to go before DNA structures such as the catenan can be used in everyday items," says Prof Alexander Heckel, "but structures of DNA can, in the near future, be used to arrange and study proteins or other molecules that are too small for a direct manipulation, by means of auto-organization." This way, DNA nano-architectures could become a versatile tool for the nanometer world, to which access is difficult.

In the manufacture of DNA nano-architecture, the scientists take advantage of the pairing rules of the four DNA nucleobases, according to which two natural DNA strands can also find each other (in DNA nano-architecture, the base order is without biological significance). An A on one strand pairs with T on the other strand and C is complementary to G. The trick is to create the sequences of the DNA strands involved in such a manner as to ensure that the desired structure builds up on its own without direct intervention on the experimenter's part. If only certain parts of the strands used complement each other, branches and junctions can be created.

As reported by Schmidt and Heckel in the journal Nano Letters, they first created two C-shaped DNA fragments for the catenans. With the help of special molecules that act as sequence-specific glue for the double helix, they arranged the "Cs" in such a ways as to create two junctions, with the open ends of the "Cs" pointing away from each other. The catenan was created by adding two strands that attach to the ends of the two ring fragments, which are still open. Thorsten Schmidt dedicated the publication to his wife Dr Diana Gonηalves Schmidt, who also appreciates the work on scientific level, since she was also a part of Alexander Heckel's work group.

Since they are much smaller than the wavelengths of visible light, the rings cannot be seen with a standard microscope. "You would have to string together about 4000 such rings to even achieve the diameter of a human hair," says Thorsten Schmidt. He therefore displays the catenans with a scanning force microscope, which scans the rings that have been placed on a surface with an extremely fine tip.


Story Source:

The above story is based on materials provided by Goethe University Frankfurt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thorsten L. Schmidt, Alexander Heckel. Construction of a Structurally Defined Double-Stranded DNA Catenane. Nano Letters, 2011; 110316152409054 DOI: 10.1021/nl200303m

Cite This Page:

Goethe University Frankfurt. "World's smallest wedding rings: Interlocking rings of DNA visible through scanning force microscope." ScienceDaily. ScienceDaily, 12 April 2011. <www.sciencedaily.com/releases/2011/04/110411131348.htm>.
Goethe University Frankfurt. (2011, April 12). World's smallest wedding rings: Interlocking rings of DNA visible through scanning force microscope. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/04/110411131348.htm
Goethe University Frankfurt. "World's smallest wedding rings: Interlocking rings of DNA visible through scanning force microscope." ScienceDaily. www.sciencedaily.com/releases/2011/04/110411131348.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins