Featured Research

from universities, journals, and other organizations

New target for developing effective anti-depressants

Date:
April 13, 2011
Source:
King's College London
Summary:
For the first time in a human model, scientists have discovered how anti-depressants make new brain cells. This means that researchers can now develop better and more efficient drugs to combat depression.

For the first time in a human model, scientists have discovered how anti-depressants make new brain cells. This means that researchers can now develop better and more efficient drugs to combat depression.

Previous studies have shown that anti-depressants make new brain cells, however, until now it was not known how they did it. In a study to be published in the journal Molecular Psychiatry, researchers from the Institute of Psychiatry, King's College London, show that anti-depressants regulate the glucocorticoid receptor (GR) -- a key protein involved in the stress response. Moreover, the study shows that all types of anti-depressant are dependent on the GR to create new cells.

Depression is expected to be the second leading burden of disease world wide by the year 2020. Recent studies have demonstrated that depressed patients show a reduction in a process called 'neurogenesis', that is, a reduction in the development of new brain cells. This reduced neurogenesis may contribute to the debilitating psychological symptoms of depression, such as low mood or impaired memory. With as much as half of all depressed patients failing to improve with currently available treatments, developing new effective anti-depressant treatment still remains a great challenge, which makes it crucial to identify new potential mechanisms to target.

The Laboratory of Stress, Psychiatry and Immunology (SPI-lab) at King's has been looking into the role of the GR in depression for a number of years. In this study, scientists used human hippocampal stem cells, the source of new cells in the human brain, as a new model to investigate 'in a dish' the effects of anti-depressants on brain cells.

Christoph Anacker, PhD student at the Institute of Psychiatry at King's and lead author of the study said: 'For the first time in a clinically relevant model, we were able to show that anti-depressants produce more stem cells and also accelerate their development into adult brain cells. Additionally, we demonstrate for the first time that stress hormones, which are generally very high in depressed patients, show the opposite effect.

'We discovered that a specific protein in the cell, the glucocorticoid receptor, is essential for this to take place. The anti-depressants activate this protein which switches on particular genes that turn immature 'stem' cells into adult 'brain' cells.

'By increasing the number of new-born cells in the adult human brain, anti-depressants counteract the damaging effects of stress hormones and may overcome the brain abnormalities which may cause low mood and impaired memory in depression.'

Anacker concludes: 'Having identified the glucocorticoid receptor as a key player in making new brain cells, we will now be able to use this novel stem cell system to model psychiatric illnesses in the laboratory, test new compounds and develop much more effective, targeted anti-depressant drugs. However, first it is important that future studies investigate all possible effects that the increase of neurogenesis has on behaviour in humans.'

This study was funded by the National Institute for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust & Institute of Psychiatry, King's College London, and the UK Medical Research Council. The study was jointly led by the senior authors Dr Carmine M. Pariante, at the Laboratory of Stress, Psychiatry and Immunology in the Department of Psychological Medicine, and Dr Sandrine Thuret and Professor Jack Price, at the Centre for the Cellular Basis of Behaviour, all based at Institute of Psychiatry King's College London.


Story Source:

The above story is based on materials provided by King's College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. C Anacker, P A Zunszain, A Cattaneo, L A Carvalho, M J Garabedian, S Thuret, J Price, C M Pariante. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry, 2011; DOI: 10.1038/mp.2011.26

Cite This Page:

King's College London. "New target for developing effective anti-depressants." ScienceDaily. ScienceDaily, 13 April 2011. <www.sciencedaily.com/releases/2011/04/110412065800.htm>.
King's College London. (2011, April 13). New target for developing effective anti-depressants. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/04/110412065800.htm
King's College London. "New target for developing effective anti-depressants." ScienceDaily. www.sciencedaily.com/releases/2011/04/110412065800.htm (accessed July 26, 2014).

Share This




More Health & Medicine News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins