Featured Research

from universities, journals, and other organizations

Lightning-fast materials testing using ultrasound

Date:
April 14, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
For years, ultrasound has proven to be a valuable tool in non-destructive materials testing. However, the demands of modern production conditions are increasing all the time. Researchers have now developed a new, more reliable process that delivers testing results at a rate that is up to a hundredfold higher.

Researchers at Fraunhofer have now developed a new, more reliable process that delivers testing results at a rate that is up to a hundredfold higher.
Credit: Fraunhofer Institute for Non-Destructive Testing

For years, ultrasound has proven to be a valuable tool in non-destructive materials testing. However, the demands of modern production conditions are increasing all the time. Researchers at Fraunhofer have now developed a new, more reliable process that delivers testing results at a rate that is up to a hundredfold higher.

Expectant mothers are familiar with the procedure: The physician examines them with an ultrasound apparatus that displays lifelike images of the fetus on the monitor. The application of this technology has been customary in medicine for years; in materials testing though, it has been used only in relatively rudimentary form to date. Researchers at the Fraunhofer Institute for Non-Destructive Testing IZFP in Saarbrücken have adapted the conventional sonar procedure -- a simple ultrasound method -- and have succeeded in generating three-dimensional images with the aid of innovative software. At the same time, they have increased the testing rate a hundredfold.

Many areas of quality assurance or production for the construction industry call for reliable testing methods: be it pipelines, railway wheels, components for power plants, bridge piers or items mass-produced by the thousands, there is a need to ensure that deep down the items produced are free from tiny fissures or imperfections. For many years, ultrasound has proven a valuable tool in non-destructive materials testing. An ultrasonic transducer radiates sound waves into the workpiece, and the time the signals require to travel and be reflected back indicates where material defects are located. Scanning workpieces in this way is relatively time-consuming, since, an inspection tact can only register a single beam angle. Thus many measurements must be performed to assemble the composite image suitable for evaluation of inspection results.

However, this approach is too slow if ultrasound testing is to be integrated in ongoing production or applied to large components. That is why Dr.-Ing. Andrey Bulavinov and his team at IZFP have developed a new method that works at up to 100 times the speed. "We no longer use the sonar method that emits a sound field in just one particular direction. Instead, we use the probe -- which experts refer to as a "phased array" -- to generate a defocused, non-directional wave that penetrates the material," the engineer explains.

"What we get back are signals coming from all directions, and the computer uses these signals to reconstruct the composite image." In a manner similar to subterranean seismic testing, it analyzes physical changes the wave encounters in the material -- diffraction and heterodyning -- and uses this information to determine the conditions within the material itself. "We follow the sound field," Bulavinov notes, "and calculate the workpiece characteristics on the basis of that." Similar to computer tomography in medicine, in the end we receive three-dimensional images of the examined object where any imperfections are easy to identify. The startling thing about this approach is that with it, a fissure is now visible even if the ultrasound was not specifically directed at it.

I-Deal Technologies, an IZFP spinoff, markets testing systems based on this principle. "The method is suitable for virtually all materials used in the aerospace as well as the automobile industry, particularly for lightweight materials," managing director Bulavinov emphasizes. "Our method is even suited for use with austenitic steel -- a type of steel that currently can be tested with traditional ultrasound methods only to a very limited degree." Upon request, the researchers also offer a fully automated quantitative analysis of the ultrasound test results. The IZFP is also demonstrating this method at Control 2011, the International Trade Fair for Quality Assurance, in Stuttgart from May 3-6.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Lightning-fast materials testing using ultrasound." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110413092845.htm>.
Fraunhofer-Gesellschaft. (2011, April 14). Lightning-fast materials testing using ultrasound. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/04/110413092845.htm
Fraunhofer-Gesellschaft. "Lightning-fast materials testing using ultrasound." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413092845.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins