Featured Research

from universities, journals, and other organizations

Portable devices' built-in motion sensors improve data rates on wireless networks

Date:
April 19, 2011
Source:
Massachusetts Institute of Technology
Summary:
For most of the 20th century, the paradigm of wireless communication was a radio station with a single high-power transmitter. As long as you were within 20 miles or so of the transmitter, you could pick up the station. With the advent of cell phones, however, and even more so with Wi-Fi, the paradigm became a large number of scattered transmitters with limited range. When a user moves out of one transmitter's range and into another's, the network has to perform a "handoff." And as anyone who's lost a cell-phone call in a moving car or lost a Wi-Fi connection while walking to the bus stop can attest, handoffs don't always happen as they should. Researchers have now developed new protocols that can often, for users moving around, improve network throughput (the amount of information that devices could send and receive in a given period) by about 50 percent.

A new protocol helps give cell phone users a constant connection as they travel about.
Credit: SVLuma / Fotolia

For most of the 20th century, the paradigm of wireless communication was a radio station with a single high-power transmitter. As long as you were within 20 miles or so of the transmitter, you could pick up the station.

With the advent of cell phones, however, and even more so with Wi-Fi, the paradigm became a large number of scattered transmitters with limited range. When a user moves out of one transmitter's range and into another's, the network has to perform a "handoff." And as anyone who's lost a cell-phone call in a moving car or lost a Wi-Fi connection while walking to the bus stop can attest, handoffs don't always happen as they should.

Most new phones, however, have built-in motion sensors -- GPS receivers, accelerometers and, increasingly, gyros. At the Eighth Usenix Symposium on Networked Systems Design and Implementation, which took place in Boston in March, MIT researchers presented a set of new communications protocols that use information about a portable device's movement to improve handoffs. In experiments on MIT's campus-wide Wi-Fi network, the researchers discovered that their protocols could often, for users moving around, improve network throughput (the amount of information that devices could send and receive in a given period) by about 50 percent.

The MIT researchers -- graduate student Lenin Ravindranath, Professor Hari Balakrishnan, Associate Professor Sam Madden, and postdoctoral associate Calvin Newport, all of the Computer Science and Artificial Intelligence Laboratory -- used motion detection to improve four distinct communications protocols. One governs the smart phone's selection of the nearest transmitter. "Let's say you get off at the train station and start walking toward your office," Balakrishnan says. "What happens today is that your phone immediately connects to the Wi-Fi access point with the strongest signal. But by the time it's finished doing that, you've walked on, so the best access point has changed. And that keeps happening."

By contrast, Balakrishnan explains, the new protocol selects an access point on the basis of the user's inferred trajectory. "We connect you off the bat to an access point that has this trade-off between how long you're likely to be connected to it and the throughput you're going to get," he says. In their experiments, the MIT researchers found that, with one version of their protocol, a moving cell phone would have to switch transmitters 40 percent less frequently than it would with existing protocols. A variation of the protocol improved throughput by about 30 percent.

Another of the protocols governs a phone's selection of bit rate, or the rate at which it sends and receives information. Bit rate needs to be tailored to the bandwidth available: try to send too much data over a weak connection and much of it will be lost; but solving that problem by keeping the bit rate low can end up squandering data capacity.

When a device is in motion, the available bandwidth is constantly fluctuating, so selecting a bit rate becomes more difficult. Because a device using the MIT protocol knows when it's in motion, it also knows when to be more careful in choosing a bit rate. In the researchers' experiments, the gains in throughput from bit rate selection varied between 20 percent and 70 percent but consistently hovered around 50 percent.

A third protocol governs the behavior of the wireless base stations rather than the devices that connect to them. Ordinarily, a base station knows that a device has broken contact only after a long enough silence. In the meantime, the base station might try to send the same data to the device over and over, waiting forlornly for acknowledgment and wasting time and power. But with information about the device's trajectory, the base station can make an educated guess about when it will lose contact.

Since Balakrishnan and Madden are two of the three primary investigators on MIT's CarTel project, which seeks to use information technology to make driving safer and more efficient, the fourth protocol uses motion data to determine routing procedures for networks of wirelessly connected cars, whose relative positions are constantly changing.

Balakrishnan adds that he and his colleagues have identified at least another half-dozen communications protocols that could benefit from information about device movement. "What we are really hoping is that this opens up a really exciting direction for work in the community," he says. "Other people will come up with more creative ideas, now that you know that you can get these sensor hints in a fairly robust way."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Portable devices' built-in motion sensors improve data rates on wireless networks." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110413120955.htm>.
Massachusetts Institute of Technology. (2011, April 19). Portable devices' built-in motion sensors improve data rates on wireless networks. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/04/110413120955.htm
Massachusetts Institute of Technology. "Portable devices' built-in motion sensors improve data rates on wireless networks." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413120955.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins