Featured Research

from universities, journals, and other organizations

Portable devices' built-in motion sensors improve data rates on wireless networks

Date:
April 19, 2011
Source:
Massachusetts Institute of Technology
Summary:
For most of the 20th century, the paradigm of wireless communication was a radio station with a single high-power transmitter. As long as you were within 20 miles or so of the transmitter, you could pick up the station. With the advent of cell phones, however, and even more so with Wi-Fi, the paradigm became a large number of scattered transmitters with limited range. When a user moves out of one transmitter's range and into another's, the network has to perform a "handoff." And as anyone who's lost a cell-phone call in a moving car or lost a Wi-Fi connection while walking to the bus stop can attest, handoffs don't always happen as they should. Researchers have now developed new protocols that can often, for users moving around, improve network throughput (the amount of information that devices could send and receive in a given period) by about 50 percent.

A new protocol helps give cell phone users a constant connection as they travel about.
Credit: SVLuma / Fotolia

For most of the 20th century, the paradigm of wireless communication was a radio station with a single high-power transmitter. As long as you were within 20 miles or so of the transmitter, you could pick up the station.

With the advent of cell phones, however, and even more so with Wi-Fi, the paradigm became a large number of scattered transmitters with limited range. When a user moves out of one transmitter's range and into another's, the network has to perform a "handoff." And as anyone who's lost a cell-phone call in a moving car or lost a Wi-Fi connection while walking to the bus stop can attest, handoffs don't always happen as they should.

Most new phones, however, have built-in motion sensors -- GPS receivers, accelerometers and, increasingly, gyros. At the Eighth Usenix Symposium on Networked Systems Design and Implementation, which took place in Boston in March, MIT researchers presented a set of new communications protocols that use information about a portable device's movement to improve handoffs. In experiments on MIT's campus-wide Wi-Fi network, the researchers discovered that their protocols could often, for users moving around, improve network throughput (the amount of information that devices could send and receive in a given period) by about 50 percent.

The MIT researchers -- graduate student Lenin Ravindranath, Professor Hari Balakrishnan, Associate Professor Sam Madden, and postdoctoral associate Calvin Newport, all of the Computer Science and Artificial Intelligence Laboratory -- used motion detection to improve four distinct communications protocols. One governs the smart phone's selection of the nearest transmitter. "Let's say you get off at the train station and start walking toward your office," Balakrishnan says. "What happens today is that your phone immediately connects to the Wi-Fi access point with the strongest signal. But by the time it's finished doing that, you've walked on, so the best access point has changed. And that keeps happening."

By contrast, Balakrishnan explains, the new protocol selects an access point on the basis of the user's inferred trajectory. "We connect you off the bat to an access point that has this trade-off between how long you're likely to be connected to it and the throughput you're going to get," he says. In their experiments, the MIT researchers found that, with one version of their protocol, a moving cell phone would have to switch transmitters 40 percent less frequently than it would with existing protocols. A variation of the protocol improved throughput by about 30 percent.

Another of the protocols governs a phone's selection of bit rate, or the rate at which it sends and receives information. Bit rate needs to be tailored to the bandwidth available: try to send too much data over a weak connection and much of it will be lost; but solving that problem by keeping the bit rate low can end up squandering data capacity.

When a device is in motion, the available bandwidth is constantly fluctuating, so selecting a bit rate becomes more difficult. Because a device using the MIT protocol knows when it's in motion, it also knows when to be more careful in choosing a bit rate. In the researchers' experiments, the gains in throughput from bit rate selection varied between 20 percent and 70 percent but consistently hovered around 50 percent.

A third protocol governs the behavior of the wireless base stations rather than the devices that connect to them. Ordinarily, a base station knows that a device has broken contact only after a long enough silence. In the meantime, the base station might try to send the same data to the device over and over, waiting forlornly for acknowledgment and wasting time and power. But with information about the device's trajectory, the base station can make an educated guess about when it will lose contact.

Since Balakrishnan and Madden are two of the three primary investigators on MIT's CarTel project, which seeks to use information technology to make driving safer and more efficient, the fourth protocol uses motion data to determine routing procedures for networks of wirelessly connected cars, whose relative positions are constantly changing.

Balakrishnan adds that he and his colleagues have identified at least another half-dozen communications protocols that could benefit from information about device movement. "What we are really hoping is that this opens up a really exciting direction for work in the community," he says. "Other people will come up with more creative ideas, now that you know that you can get these sensor hints in a fairly robust way."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Portable devices' built-in motion sensors improve data rates on wireless networks." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110413120955.htm>.
Massachusetts Institute of Technology. (2011, April 19). Portable devices' built-in motion sensors improve data rates on wireless networks. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2011/04/110413120955.htm
Massachusetts Institute of Technology. "Portable devices' built-in motion sensors improve data rates on wireless networks." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413120955.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins