Featured Research

from universities, journals, and other organizations

Ceramic coatings may protect jet engines from volcanic ash

Date:
April 13, 2011
Source:
Ohio State University
Summary:
Last year's $2 billion shutdown of European airspace following a volcanic eruption in Iceland alerted everyone to the danger that ash clouds can pose to aircraft engines. Now, researchers have discovered that a new class of ceramic coatings could offer jet engines special protection against volcanic ash damage in the future.

Photograph of the Eyjafjallajökull ash cloud. Ohio State University researchers have discovered that a new class of ceramic coatings could offer jet engines special protection against volcanic ash damage in the future. Photograph by Peter Greenfield, courtesy of Ohio State University.
Credit: Image courtesy of Ohio State University

Last year's $2 billion shutdown of European airspace following a volcanic eruption in Iceland alerted everyone to the danger that ash clouds can pose to aircraft engines. Now, researchers have discovered that a new class of ceramic coatings could offer jet engines special protection against volcanic ash damage in the future.

For a study published online in the Early View edition of the journal Advanced Materials, the researchers tested two coatings that were originally developed to keep airborne sand from damaging jet engines, and found that the coatings also resist damage caused by ash deposits.

"Of course, it's best for jets to avoid ash in the first place," said Nitin Padture, College of Engineering Distinguished Professor at the Ohio State University, who led the study. "That's not always possible. We determined that these coatings could offer sufficient protection against small amounts of ash ingested by the engine over time."

However, large amounts of ash can temporarily jam a jet engine and cause it to stall, he explained. These coatings would not be useful in those extreme circumstances.

Temperatures inside an engine reach up to 2,500 degrees Fahrenheit, and ceramic thermal-barrier coatings insulate metallic engine parts from that heat. The ingested ash melts onto the coating and penetrates the coating. Upon cooling, the molten ash forms a brittle glass that flakes off, taking the coating with it.

It's a familiar story to Padture, who previously invented a new coating composition to prevent similar engine damage caused by sand.

Like sand, ash is made mostly of silica. When the Icelandic volcano Eyjafjallajökull erupted in April 2010, it billowed clouds of silicate ash.

"Ash poses a threat very similar to sand, but ash composition varies widely depending on the type of volcano. After what happened in Iceland, we wanted to see how ash interacted with our new thermal barrier coating, and whether the underlying damage mechanisms were any different," he said.

Doctoral students Julie Drexler and Andrew Gledhill took samples of the ceramic coatings on pieces of metal, and coated them with ash from the Eyjafjallajökull eruption. Then they heated the samples in a furnace to simulate the high temperatures created in a jet engine.

They experimented with a typical jet engine coating and two sand-resistant coatings. One was Padture's formula, containing zirconia and alumina, and the other was a commercially available new formula based on gadolinium zirconate.

In that test, the ash badly damaged the typical coating, while coatings made of Padture's formula and the gadolinium zirconate formula retained their overall structure.

Looking at cross-sections of the samples, the researchers saw why: molten ash had penetrated through the pores of the typical ceramic coating all the way to its base. But in the other two, the molten ash barely penetrated.

Drexler explained why the pores are important.

"Pores give the coating its strain tolerance," she said. "They make room for the coating to expand and contract as the engine heats up while flying, and as it cools after landing. When all the pores are plugged with ash, the coating can't adjust to the temperature anymore, and it breaks off."

On the sand-resistant coatings, the ash filled the pores only near the surface. Chemical analysis revealed that the ash reacted with the alumina in the first coating to produce a thin layer of the mineral anorthite below the surface, while on the gadolinium zirconate it produced a layer of the mineral apatite.

"The chemical reaction arrests the penetration of the ash into the coatings," Gledhill said. "The unaffected pores allow the coating to expand and contract."

Now, the researchers are repeating their experiment with a new setup. They are heating samples over and over with a powerful blowtorch, and letting them cool in between to more closely simulate engine conditions.

Both sand-resistant coatings are more expensive than the typical coating, but the researchers think that the benefits outweigh the cost.

"This study's not going to solve all the problems of ash clouds and jet engines, but we are making progress, and we've learned a lot about the physics of the situation," Padture said.

But that's not all they learned.

"We also learned how to pronounce 'Eyjafjallajökull.'"

Ohio State coauthors on the Advanced Materials paper included postdoctoral scholar Kongara Reddy. The engineers collaborated with Kentaro Shinoda and Sanjay Sampath of Stony Brook University and Alexander Vasiliev of the Russian Academy of Sciences. University of Iceland volcanologist Niels Óskarsson provided samples of Eyjafjallajökull ash.

Funding for this research was provided in part by the Office of Naval Research, the Department of Energy, and the National Science Foundation.


Story Source:

The above story is based on materials provided by Ohio State University. The original article was written by Pam Frost Gorder. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Ceramic coatings may protect jet engines from volcanic ash." ScienceDaily. ScienceDaily, 13 April 2011. <www.sciencedaily.com/releases/2011/04/110413120957.htm>.
Ohio State University. (2011, April 13). Ceramic coatings may protect jet engines from volcanic ash. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/04/110413120957.htm
Ohio State University. "Ceramic coatings may protect jet engines from volcanic ash." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413120957.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins