Featured Research

from universities, journals, and other organizations

Path to potential therapy for NF2, a rare tumor disorder

Date:
April 18, 2011
Source:
The Wistar Institute
Summary:
The proteins that provide cells with a sense of personal space could lead to a therapeutic target for neurofibromatosis type 2 (NF2), an inherited cancer disorder, according to researchers. Their findings could have profound implications for NF2 and related cancers, such as mesothelioma.

The proteins that provide cells with a sense of personal space could lead to a therapeutic target for neurofibromatosis type 2 (NF2), an inherited cancer disorder, according to researchers at The Wistar Institute. Their findings, which appear in the April 12 issue of the journal Cancer Cell, could have profound implications for NF2 and related cancers, such as mesothelioma.

The researchers describe, for the first time, that Merlin, the protein encoded within the NF2 gene interacts with a protein called angiomotin. This connection between Merlin and angiomotin also brings together two important information networks in cells, both of which have been implicated in numerous forms of cancer. It is a connection, the researchers say, between the sensors that detect interactions between cells and the signaling networks that drive cell division.

"Angiomotin is required for movement of cells that form new blood vessels, so it is fascinating to see it so closely linked to merlin, the product of the NF2 gene, loss of which leads to tumor formation," said Joseph Kissil, Ph.D., senior author of the study and associate professor in the Molecular and Cellular Oncogenesis Program of The Wistar Institute Cancer Center. "The discovery opens up a potential new method to treat NF2 by attacking the tumor cells directly and by starvation, a strategy already employed in certain cancer therapies."

"Drugs like Avastin, for example, target the growing blood vessels," Kissil said, "but what makes angiomotin a tempting target is that it is used by both blood vessels and the growing tumor cells that need the nutrients these blood vessels provide."

NF2 is a genetic disorder caused by a mutation in both copies of a person's NF2 gene. It occurs in about one in every 30,000 people, and it is mostly hereditary. NF2 generally appears as benign tumors in the nervous system of young adults, often causing deafness as tumors affect the auditory nerves. While the tumors are mostly benign, more malignant tumors may eventually arise. Moreover, even the benign tumors often cause debilitating pain as they spread throughout the nervous system. There is currently no treatment for NF2 other than surgery to remove tumors as they appear.

Mutations in the NF2 gene disrupt the function of the gene's protein product, Merlin, which is part of an elaborate molecular signaling pathway that regulates how cells grow and divide. These pathways are akin to information channels, and disrupting one protein can alter the function of other proteins both upstream and downstream along the channel. Merlin is particularly interesting to cancer biologists, as the mutations have been found in about half of all cases of the deadly lung cancer mesothelioma, and in some instances of thyroid, bladder and other cancers.

According to Kissil, Merlin normally stops cells from growing once they come into contact with adjacent cells. That is, Merlin binds to the angiomotin at "junctions," areas where cells come into contact with each other. When bound together, the interacting proteins relate a signal to the cell that, essentially, orders it to cease further growth and movement. It is a way for cells to coordinate their growth within a tissue. Cancerous cells, for example, often lack that sense of inhibition, and they will continue growing unchecked.

The Kissil laboratory plans to continue their exploration of angiomotin as a potential therapeutic target for treating NF2, as well as look into the role of angiomotin in other cancers known to be affected by NF2 mutations.

Funding for this study was provided in part through a grant to Kissil from the National Cancer Institute of the National Institutes of Health. The study was also supported by a Young Investigator Award from the Children's Tumor Foundation to Chunling Yi, Ph.D., a postdoctoral fellow in the Kissil laboratory.

Wistar collaborators also include research assistants Scott Troutman and Neepa Christian; graduate students Daniela Fera and Jacqueline L. Avila; and Wistar professors David W. Speicher, Ph.D. and Ronen Marmorstein, Ph.D. Co-authors also include Akihiko Shimono, Ph.D., of the Cancer Science Institute of Singapore at the National University of Singapore; Lars Holmgren, Ph.D., and Nathalie L. Persson of the Karolinska Institute in Stockholm, Sweden; and Anat Stemmer-Rachamimov, M.D., of Massachusetts General Hospital in Boston.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chunling Yi, Scott Troutman, Daniela Fera, Anat Stemmer-Rachamimov, Jacqueline L. Avila, Neepa Christian, Nathalie Luna Persson, Akihiko Shimono, David W. Speicher, Ronen Marmorstein, Lars Holmgren, Joseph L. Kissil. A Tight Junction-Associated Merlin-Angiomotin Complex Mediates Merlin's Regulation of Mitogenic Signaling and Tumor Suppressive Functions. Cancer Cell, 2011; 19 (4): 527-540 DOI: 10.1016/j.ccr.2011.02.017

Cite This Page:

The Wistar Institute. "Path to potential therapy for NF2, a rare tumor disorder." ScienceDaily. ScienceDaily, 18 April 2011. <www.sciencedaily.com/releases/2011/04/110415154738.htm>.
The Wistar Institute. (2011, April 18). Path to potential therapy for NF2, a rare tumor disorder. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2011/04/110415154738.htm
The Wistar Institute. "Path to potential therapy for NF2, a rare tumor disorder." ScienceDaily. www.sciencedaily.com/releases/2011/04/110415154738.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins