Featured Research

from universities, journals, and other organizations

School students help astronomers study mysterious X-ray source

Date:
April 26, 2011
Source:
Royal Astronomical Society (RAS)
Summary:
Astronomers from Wales and the Netherlands, in collaboration with five schools, have used eight telescopes simultaneously to study the strange behavior of an X-ray binary star system.

Artist's impression of IGR J00291+5934. The strong gravity from the dense pulsar attracts material from the companion. The flow of gas from the companion to the pulsar is energetic and glows in X-ray light.
Credit: NASA/Dana Berry

Astronomers from Wales and the Netherlands, in collaboration with five schools, have used eight telescopes simultaneously to study the strange behaviour of an X-ray binary star system. Results were presented by postgraduate student Fraser Lewis at the RAS National Astronomy Meeting in Llandudno, Wales, on April 18.

Related Articles


IGR J00291+5934 ('00291') is a rare X-ray binary system containing a pulsar -- a neutron star spinning several hundred times per second -- and a normal star. Only 12 such systems are known. In September 2008, 00291 increased in brightness at X-ray wavelengths by a factor of at least a thousand times and in visible wavelengths by a factor of around a hundred times. While this type of outburst is not uncommon for this type of system, the timescale is usually months to years. However 00291, having been in outburst for 20 days, faded away to its normal faint state but then re-brightened within 30 days.

"We had never seen this rapid a turnaround in a system of this type before" said Lewis, of the Faulkes Telescope Project at the University of Glamorgan. "To try to understand what was driving this unique behaviour, we gathered data from several telescopes, at different wavelengths, to create a dataset of unprecedented detail."

The group, led by Lewis and Dr David Russell, of the University of Amsterdam, used data from Faulkes Telescope North, the Isaac Newton Telescope and the Keck Telescope (optical wavelengths), PAIRITEL (infrared), the Westerbork Synthesis Radio Telescope (radio), the Swift GRB mission (UV and X-ray), and the XMM-Newton and RXTE satellites (X-ray). Five schools, including St. Brigid's School, Denbigh and St Davids College, Cardiff, were involved in collecting the data using Faulkes Telescope North.

In X-ray binary systems, material from the star spirals in towards the pulsar, forming an accretion disc. Friction and gravity heat this material up until it reaches temperature of millions of degrees and emits X-rays.

"The behaviour of 00291 is baffling. Outbursts are thought to be driven by the 'emptying' of the accretion disc, which means that the time between outbursts indicates the time that it takes to fill the disc, and the size of the disc itself. However, for a system as compact as 00291, it's unlikely that it could replenish its supply within 30 days," said Lewis.

To find a solution to this mystery, Lewis and Russell have turned to a group at the Naval Research Laboratory in Washington led by Dr Jacob Hartman. Hartman's group suggests that the outburst is all one event that was interrupted halfway through by a propeller effect.

"The idea is that when the 'propeller' switches on, the material that was spiralling inwards becomes ejected from the system, stopping the outburst. Then the propeller switches off again, the outburst restores itself. However, there are still many things that we don't understand," said Lewis.

These results are presented within the wider context of an extensive optical monitoring program of 32 low-mass X-ray binaries using the 2-metre Faulkes Telescopes in Hawaii and Australia.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jacob M. Hartman, Duncan K. Galloway, Deepto Chakrabarty. A Double Outburst from IGR J00291 5934: Implications for Accretion Disk Instability Theory. The Astrophysical Journal, 2011; 726 (1): 26 DOI: 10.1088/0004-637X/726/1/26

Cite This Page:

Royal Astronomical Society (RAS). "School students help astronomers study mysterious X-ray source." ScienceDaily. ScienceDaily, 26 April 2011. <www.sciencedaily.com/releases/2011/04/110418084017.htm>.
Royal Astronomical Society (RAS). (2011, April 26). School students help astronomers study mysterious X-ray source. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/04/110418084017.htm
Royal Astronomical Society (RAS). "School students help astronomers study mysterious X-ray source." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418084017.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins