Featured Research

from universities, journals, and other organizations

Compound effectively halts progression of multiple sclerosis in animal model

Date:
April 18, 2011
Source:
Scripps Research Institute
Summary:
Scientists have developed the first of a new class of highly selective compounds that effectively suppresses the severity of multiple sclerosis in animal models. The new compound could provide new and potentially more effective therapeutic approaches to multiple sclerosis and other autoimmune diseases that affect patients worldwide.

Scientists from the Florida campus of The Scripps Research Institute have developed the first of a new class of highly selective compounds that effectively suppresses the severity of multiple sclerosis in animal models. The new compound could provide new and potentially more effective therapeutic approaches to multiple sclerosis and other autoimmune diseases that affect patients worldwide.

The study appeared April 17, 2011, in an advance online edition of the journal Nature.

Current treatments for autoimmunity suppress the patient's entire immune system, leaving patients vulnerable to a range of adverse side effects. Because the new compound, known as SR1001, only blocks the actions of a specific cell type playing a significant role in autoimmunity, it appears to avoid many of the widespread side effects of current therapies.

"This is a novel drug that works effectively in animal models with few side effects," said Tom Burris, Ph.D., a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study, which was a multidisciplinary collaboration with scientists including Patrick Griffin, William Roush, and Ted Kamenecka of Scripps Research, and Paul Drew of the University of Arkansas for Medical Sciences. "We have been involved in several discussions with both pharmaceutical and biotechnology firms who are very interested in developing it further."

A lengthy process of drug development and review is required to ensure a new drug's safety and efficacy before it can be brought to market.

"This impressive multidisciplinary team has used a combined structural and functional approach to describe a class of molecules that could lead to new medicines for treating autoimmune diseases," said Charles Edmonds, Ph.D. who oversees structural biology grants at the National Institutes of Health. "Breakthroughs such as this highlight the value of scientists with diverse expertise joining forces to solve important biological problems that have the potential to benefit human health."

Targeting Specific Receptors

For the past several years, Burris and his colleagues have been investigating small-molecule compounds that affect particular disease-related receptors (structures that bind other molecules, triggering some effect on the cell). In particular, the scientists have been interested in a pair of "orphan nuclear receptors" (receptors with no known natural binding partner) called RORα and RORγ involved in both autoimmune and metabolic diseases.

These particular receptors play a critical role in the development of TH17 cells, a form of T helper cells that make up part of the immune system. A relatively new discovery, TH17 cells have been implicated in the pathology of numerous autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and lupus. TH17 cells produce Interleukin-17, a natural molecule that can induce inflammation, a characteristic of autoimmunity.

"If you eliminate TH17 cell signals, you basically eliminate the disease in animal models," Burris said. "Our compound is the first small-molecule orally active drug that targets this specific cell type and shuts it down. Once SR1001 is optimized, chances are it will be far more potent and effective."

The compound works without affecting other types of T helper cells and without any significant metabolic impact, Burris added.

The first author of the study is Laura A. Solt of Scripps Research. In addition to Burris, Griffin, Roush, Kamenecka, Drew, and Solt, other authors include Naresh Kumar, Philippe Nuhant, Yongjun Wang, Janelle L. Lauer, Jin Liu, and Monica Istrate of Scripps Research; Dušica Vidović, Stephan C. Schόrer of Scripps Research and the Center for Computational Science, University of Miami; and Jihong Xu and Gail Wagoner of the University of Arkansas for Medical Sciences.

The study was supported by the National Institutes of Health's National Institute of General Medical Sciences, National Institute of Diabetes and Digestive and Kidney Diseases, and National Institute of Mental Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura A. Solt, Naresh Kumar, Philippe Nuhant, Yongjun Wang, Janelle L. Lauer, Jin Liu, Monica A. Istrate, Theodore M. Kamenecka, William R. Roush, Dušica Vidović, Stephan C. Schόrer, Jihong Xu, Gail Wagoner, Paul D. Drew, Patrick R. Griffin, Thomas P. Burris. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011; DOI: 10.1038/nature10075

Cite This Page:

Scripps Research Institute. "Compound effectively halts progression of multiple sclerosis in animal model." ScienceDaily. ScienceDaily, 18 April 2011. <www.sciencedaily.com/releases/2011/04/110418093846.htm>.
Scripps Research Institute. (2011, April 18). Compound effectively halts progression of multiple sclerosis in animal model. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2011/04/110418093846.htm
Scripps Research Institute. "Compound effectively halts progression of multiple sclerosis in animal model." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418093846.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins