Featured Research

from universities, journals, and other organizations

Exploiting the stress response to detonate mitochondria in cancer cells

Date:
April 19, 2011
Source:
The Wistar Institute
Summary:
Researchers have found a new way to force cancer cells to self-destruct. Low doses of a drug that disrupts mitochondria allows a second drug to push the cell toward apoptosis, or programmed cell death. Their findings show how this combination approach synergistically kills tumor cells in both mouse models of glioblastoma and human glioblastoma cells.

Researchers at The Wistar Institute have found a new way to force cancer cells to self-destruct. Low doses of one anti-cancer drug currently in development, called Gamitrinib, sensitize tumor cells to a second drug, called TRAIL, also currently in clinical development as part of an anticancer regimen.

Related Articles


Their findings, published in the April issue of the Journal for Clinical Investigation, show how this combination approach kills tumor cells in both mouse models of glioblastoma and human glioblastoma cells. Glioblastomas are the most common and aggressive form of malignant brain cancer, affecting roughly 6 out of every 100,000 people. There is currently no effective treatment for glioblastoma, and patients rarely survive more than a year after diagnosis.

"We found that a low dose of Gamitrinib makes cancer cells susceptible to TRAIL, bypassing many of the mechanisms tumors use to survive," said senior author Dario Altieri, M.D., the Robert and Penny Fox Distinguished Professor at Wistar and director of The Wistar Institute Cancer Center. "Here we have found a new way to combine cancer therapies, one that could be applied to treating many types of cancer because both of these drugs target different mechanisms of tumor cell survival that revolve around mitochondria."

As commonly depicted in high school biology texts, mitochondria are the "powerhouses" of the cells, organelles whose main function is to turn sugar into useable energy. What is less commonly known is the role of mitochondria in programmed cell death, or apoptosis, the self-destruct system hardwired into every cell. Apoptosis evolved, in part, as a way for the body to react to extreme stress, a means to sacrifice damaged cells for the greater good of the organism. Cancer cells rely on the mitochondria to provide the energy rapidly-growing tumors need to survive, but find ways to block the signaling pathways that trigger apoptosis. Many researchers, including Altieri, have looked for ways to force tumor cells to hit this self-destruct switch.

Gamitrinib is a chemical inhibitor first developed by Altieri and his colleagues in 2009 at the University of Massachusetts. The drug binds to and inhibits Hsp90 -- Heat Shock Protein-90 -- a so-called chaperone protein that is highly active in mitochondria and other cellular organelles where it helps regulate and "rescue" other proteins, particularly in times of stress. Their previous studies have shown that Gamitrinib is effective in damaging tumor cell mitochondria, which can lead to cell death.

"When tumor cells are confronted with lower concentrations of Gamitrinib, they mount a stress-related defensive system, essentially eating damaged mitochondria and altering how genes are turned on and off to compensate for induced defects in the mitochondria," Altieri said. "This process naturally suppresses Nuclear Factor-kappa Beta, a protein that prevents apoptosis from happening. Ironically, it's this very defensive measure that we can exploit in killing tumor cells."

Nuclear Factor-kappa Beta (NF-κΒ) broadly promotes survival in tumors by halting the processes that lead to apoptosis. Altieri and his colleagues wanted to see if the suppression of NF-κΒ would provide an opportunity for TRAIL, a small engineered molecule that mimics the signals used to induce apoptosis.

In their experiments, researchers confirmed previous studies that showed how TRAIL alone did not affect glioblastoma in cell and animal models of the disease. TRAIL plus Gamitrinib, however, stimulated damage to mitochondria in tumor cells, which started a cascading series of reactions, culminating in cell death. Preclinical experiments conducted in mouse models of glioblastoma demonstrated that the combination did not cause any detectable toxic side effects.

According to Altieri, the fact that Gamitrinib and TRAIL are in clinical development already may help speed the process that could see eventual clinical trials of the two drugs together. "There is much preclinical work to be done, of course, but we are very interested in laying the groundwork now toward initial clinical trials," said Altieri.

Going forward, the researchers also plan to delve deeper into the cellular processes at work.

"I find the basic biology of this system fascinating, since here we show how mitochondria, which are the only organelles that have their own DNA, must communicate with the DNA in the cell's nucleus," Altieri said. "It is not a well-understood process by any means."

This study was supported by grants from the National Institutes of Health to Altieri, and a grant to co-author Markus D. Siegelin, M.D. from Deutsche Forschungsgemeinschaft (German Research Foundation).

The co-first authors of the study are Takehiko Dohi, Ph.D., currently a member of the Altieri lab at Wistar, and Siegelin, formerly a member of Altieri's previous laboratory at the University of Massachusetts Medical School and now a resident clinician at Columbia University. Contributors from the University of Massachusetts also include Christopher M. Raskett, Gregory M. Orlowski, Christine M. Powers, Candace A. Gilbert, Alonzo H. Ross, and Janet Plescia.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Markus D. Siegelin, Takehiko Dohi, Christopher M. Raskett, Gregory M. Orlowski, Christine M. Powers, Candace A. Gilbert, Alonzo H. Ross, Janet Plescia, Dario C. Altieri. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. Journal of Clinical Investigation, 2011; 121 (4): 1349 DOI: 10.1172/JCI44855

Cite This Page:

The Wistar Institute. "Exploiting the stress response to detonate mitochondria in cancer cells." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110419151807.htm>.
The Wistar Institute. (2011, April 19). Exploiting the stress response to detonate mitochondria in cancer cells. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2011/04/110419151807.htm
The Wistar Institute. "Exploiting the stress response to detonate mitochondria in cancer cells." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419151807.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins