Featured Research

from universities, journals, and other organizations

Decoding human genes is goal of new open-source encyclopedia

April 24, 2011
Penn State
A massive database cataloging the functional components of the human genome is being made available as an open resource to scientists, classrooms, science writers, and the public, thanks to an international team of scientists.

ENCODE is a massive database cataloging many of the functional elements of the entire collection of human genes -- the human genome. The ENCODE data are being made available to the scientific community and to the public as an open resource, thanks to an international team of researchers. This illustration shows a group of proteins in the process of traveling along a spiraling strand of DNA, a structure comprised of genetic material. A chromosome structure, composed of tightly coiled DNA, is illustrated in the background.
Credit: National Institutes of Health

A massive database cataloging the human genome's functional elements -- including genes, RNA transcripts, and other products -- is being made available as an open resource to the scientific community, classrooms, science writers, and the public, thanks to an international team of researchers.

Related Articles

In a paper that will be published in the journal PLoS Biology on 19 April 2011, the project -- called ENCODE (Encyclopedia Of DNA Elements) -- provides an overview of the team's ongoing efforts to interpret the human genome sequence, as well as a guide for using the vast amounts of data and resources produced so far by the project.

Ross Hardison, the T. Ming Chu Professor of Biochemistry and Molecular Biology at Penn State University and one of the principal investigators of the ENCODE Project team, explained that the philosophy behind the project is one of scientific openness, transparency, and collaboration across sub-disciplines. ENCODE comes on the heels of the now-complete Human Genome Project -- a 13-year effort aimed at identifying all the approximately 20,000 to 25,000 genes in human DNA -- which also was based on the belief in open-source data sharing to further scientific discovery and public understanding of science.

The ENCODE Project has accomplished this goal by publishing its database at genome.ucsc.edu/ENCODE, and by posting tools to facilitate data use at encodeproject.org. "ENCODE resources are already being used by scientists for discovery," Hardison said. "But what's kind of revolutionary is that they also are being used in classes to train students in all areas of biology. Our classes here at Penn State are using real data on genomic variation and function in classroom problem sets, shortly after the labs have generated them."

Hardison explained that there are about 3-billion base pairs in the human genome, making the cataloging and interpretation of the information a monumental task. "We have a very lofty goal: To identify the function of every nucleotide of the human genome," he said. "Not only are we discovering the genes that give information to cells and make proteins, but we also want to know what determines that the proteins are made in the right cells, and at the appropriate time. Finding the DNA elements that govern this regulated expression of genes is a major goal of ENCODE." Hardison explained that ENCODE's job is to identify the human genome's functional regions, many of which are quite esoteric. "The human DNA sequence often is described as a kind of language, but without a key to interpret it, without a full understanding of the 'grammar,' it might as well be a big jumble of letters." Hardison added that the ENCODE Project supplies data such as where proteins bind to DNA and where parts of DNA are augmented by additional chemical markers. These proteins and chemical additions are keys to understanding how different cells within the human body interpret the language of DNA.

In the soon-to-be-published paper, the team shows how the ENCODE data can be immediately useful in interpreting associations between disease and DNA sequences that can vary from person to person -- single nucleotide polymorphisms (SNPs). For example, scientists know that DNA variants located upstream of a gene called MYC are associated with multiple cancers, but until recently the mechanism behind this association was a mystery. ENCODE data already have been used to confirm that the variants can change binding of certain proteins, leading to enhanced expression of the MYC gene and, therefore, to the development of cancer. ENCODE also has made similar studies possible for thousands of other DNA variants that may be associated with susceptibility to a variety of human diseases.

Another of the principal investigators of the project, Richard Myers, president and director of the HudsonAlpha Institute for Biotechnology, explained that the ENCODE Project is unique because it requires collaboration from multiple people all over the world at the cutting edge of their fields. "People are working in a coordinated manner to figure out the function of our human genome," he said. "The importance of the project extends beyond basic knowledge of who and what we are as humans, and into an understanding of human health and disease."

Scientists with the ENCODE Project also are applying up to 20 different tests in 108 commonly used cell lines to compile important data. John Stamatoyannopoulos, an assistant professor of genome sciences and medicine at the University of Washington and another principal investigator, explained that the ENCODE Project has been responsible for producing many assays -- molecular-biology procedures for measuring the activity of biochemical agents -- that are now fundamental to biology. "Widely used computational tools for processing and interpreting large-scale functional genomic data also have been developed by the project," Stamatoyannopoulos added. "The depth, quality, and diversity of the ENCODE data are unprecedented."

Hardison said that the portion of the human genome that actually codes for protein is about 1.1 percent. "That's still a lot of data," he said. "And to complicate matters even more, most mechanisms for gene expression and regulation lie outside what we call the 'coding' region of DNA." Hardison explained that scientists have a limited number of tools with which to explore the genome, and one that has been used widely is inter-species comparison. "For example, we can compare humans and chimpanzees and glean some fascinating information," Hardison said. "But very few proteins and other DNA products differ in any fundamental way between humans and chimps. The important difference between us and our close cousins lies in gene expression -- the basic level at which genes give rise to traits such as eye color, height, and susceptibility to a particular disease. ENCODE is helping to map the very proteins involved in gene regulation and gene expression. Our paper not only explains how to find the data, but it also explains how to apply the data to interpret the human genome."

The ENCODE Project is funded, primarily, by the National Human Genome Research Institute of the U. S. National Institutes of Health.

Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.

Journal Reference:

  1. The ENCODE Project Consortium. A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011; 9 (4): e1001046 DOI: 10.1371/journal.pbio.1001046

Cite This Page:

Penn State. "Decoding human genes is goal of new open-source encyclopedia." ScienceDaily. ScienceDaily, 24 April 2011. <www.sciencedaily.com/releases/2011/04/110419205538.htm>.
Penn State. (2011, April 24). Decoding human genes is goal of new open-source encyclopedia. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2011/04/110419205538.htm
Penn State. "Decoding human genes is goal of new open-source encyclopedia." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419205538.htm (accessed April 1, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins