Featured Research

from universities, journals, and other organizations

Subset of self-destructive immune cells may selectively drive diabetes

Date:
April 22, 2011
Source:
Cell Press
Summary:
New research identifies a distinctive population of immune cells that may play a key role in the pathogenesis of diabetes. The research sheds new light on the pathogenesis of diabetes and may lead to the development of new more selective therapeutic strategies for diabetes and other autoimmune diseases of the accessory organs of the digestive system.

New research identifies a distinctive population of immune cells that may play a key role in the pathogenesis of diabetes. The research, available online in the April 21st issue of Immunity, sheds new light on the pathogenesis of diabetes and may lead to the development of new more selective therapeutic strategies for diabetes and other autoimmune diseases of the accessory organs of the digestive system.

Type 1 diabetes (T1D) is a chronic autoimmune disease that develops when the immune system destroys insulin-producing cells in the pancreas. Previous work using a mouse model of diabetes (nonobese diabetic or "NOD" mice) demonstrated that multiple types of immune cells are necessary for the development of T1D, including two different types of T cells, CD4+ and CD8+ T cells, as well as B cells. The individual roles and interactions of these cells in the pathogenesis of T1D are not well understood.

"We do know that the cytokine interleukin (IL)-21 is produced by CD4+ T cells and plays a critical role in autoimmune diseases, and that IL-21 contributes to the proliferation, differentiation and survival of motile types of immune cells," explains senior study author, Dr. Cecile King from the Garvan Institute of Medical Research. "However, how IL-21 mediates its effect on autoimmune disease pathogenesis remains an important unanswered question."

Dr. King and colleagues discovered a subset of CD4+ T cells that produce IL-21 and that express a protein called chemokine receptor 9 (CCR9). In healthy humans, CCR9 is found primarily in T cells that selectively migrate to the gut and is thought to play a role in several inflammatory disorders of the gastrointestinal tract. The researchers showed that this newly identified subset of CD4+ cells also infiltrate the pancreas and other accessory organs of the digestive system and "help" CD8+ cells to elicit T1D.

"We identified a subset of CD4+ T cells that may contribute to the regional specification of organ-specific autoimmune disease," concludes Dr. King. "Recent studies have demonstrated that IL-21 is critical for the maintenance of CD8+ T cells during chronic infection. In our study we showed that IL-21 is also important for the survival of diabetogenic CD8+ T cells. Further studies are needed to confirm that this population of cells is necessary for autoimmune diseases that afflict accessory organs of the digestive system and to explore the possibility that targeting this cell population as a potential therapeutic strategy for diabetes."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Helen M. McGuire, Alexis Vogelzang, Cindy S. Ma, William E. Hughes, Pablo A. Silveira, Stuart G. Tangye, Daniel Christ, David Fulcher, Marika Falcone, Cecile King. A Subset of Interleukin-21 Chemokine Receptor CCR9 T Helper Cells Target Accessory Organs of the Digestive System in Autoimmunity. Immunity, Volume 34, Issue 4, 602-615, 22 April 2011 DOI: 10.1016/j.immuni.2011.01.021

Cite This Page:

Cell Press. "Subset of self-destructive immune cells may selectively drive diabetes." ScienceDaily. ScienceDaily, 22 April 2011. <www.sciencedaily.com/releases/2011/04/110421122325.htm>.
Cell Press. (2011, April 22). Subset of self-destructive immune cells may selectively drive diabetes. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2011/04/110421122325.htm
Cell Press. "Subset of self-destructive immune cells may selectively drive diabetes." ScienceDaily. www.sciencedaily.com/releases/2011/04/110421122325.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins