Featured Research

from universities, journals, and other organizations

Frog embryos lead to new understanding of cardiac development

Date:
April 23, 2011
Source:
University of Pennsylvania
Summary:
During embryonic development, cells migrate to their eventual location in the adult body plan and begin to differentiate into specific cell types. There is now new insight into how these processes regulate tissues formation in the heart.

Fluorescently-dyed cells migrating to the heart.
Credit: Image courtesy of University of Pennsylvania

During embryonic development, cells migrate to their eventual location in the adult body plan and begin to differentiate into specific cell types. Thanks to new research at the University of Pennsylvania, there is new insight into how these processes regulate tissues formation in the heart.

Related Articles


A developmental biologist at Penn's School of Veterinary Medicine, Jean-Pierre Saint-Jeannet, along with a colleague, Young-Hoon Lee of South Korea's Chonbuk National University, has mapped the embryonic region that becomes the part of the heart that separates the outgoing blood in Xenopus, a genus of frog.

Xenopus is a commonly used model organism for developmental studies, and is a particularly interesting for this kind of research because amphibians have a single ventricle and the outflow tract septum is incomplete.

In higher vertebrates, chickens and mice, the cardiac neural crest provides the needed separation for both circulations at the level of the outflow tract, remodeling one vessel into two. In fish, where there is no separation at all between the two circulations, the cardiac neural crest contributes to all regions of the heart.

"In the frog, we were expecting to find something that was in between fish and higher vertebrates, but that's not the case at all," said Saint-Jeannet. "It turns out that cardiac neural crest cells do not contribute to the outflow tract septum, they stop their migration before entering the outflow tract. The blood separation comes from an entirely different part of the embryo, known as the 'second heart field.'"

"As compared to other models the migration of the cardiac neural crest in amphibians has been dramatically changed through evolution," he said.

Saint-Jeannet's research will be published in the May 15 edition of the journal Development.

To determine where the neural crest cells migrated during development, the researchers labeled the embryonic cells with a fluorescent dye, then followed the path those marked cells took under a microscope. "We label the cardiac neural crest cells in one embryo and then graft them onto an embryo that is unlabeled. We let the embryo develop normally and look where those cells end up in the developing heart," said Saint-Jeannet.

Knowing these paths, and the biological signals that govern them, could have implications for human health.

"There are a number of pathologies in humans that have been associated with abnormal deployment of the cardiac neural crest, such as DiGeorge Syndrome," said Saint-Jeannet. "Among other developmental problems, these patients have an incomplete blood separation at the level of the outflow tract, because the cardiac neural crest does not migrate and differentiate at the proper location."

DiGeorge syndrome is present in about 1 in 4,000 live births, and often requires cardiac surgery to correct.

"Xenopus could be a great model to study the signals that cause those cells to migrate into the outflow tract of the heart,' said Saint-Jeannet. "If you can understand the signals that prevent or promote the colonization of this tissue, you can understand the pathology of something like DiGeorge syndrome and perhaps figure out what kind of molecule we can introduce there to force those cells to migrate further down."

This research was supported by Bridge Funds from the University of Pennsylvania and the School of Veterinary Medicine and by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Frog embryos lead to new understanding of cardiac development." ScienceDaily. ScienceDaily, 23 April 2011. <www.sciencedaily.com/releases/2011/04/110422115844.htm>.
University of Pennsylvania. (2011, April 23). Frog embryos lead to new understanding of cardiac development. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/04/110422115844.htm
University of Pennsylvania. "Frog embryos lead to new understanding of cardiac development." ScienceDaily. www.sciencedaily.com/releases/2011/04/110422115844.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins