Featured Research

from universities, journals, and other organizations

Frog embryos lead to new understanding of cardiac development

Date:
April 23, 2011
Source:
University of Pennsylvania
Summary:
During embryonic development, cells migrate to their eventual location in the adult body plan and begin to differentiate into specific cell types. There is now new insight into how these processes regulate tissues formation in the heart.

Fluorescently-dyed cells migrating to the heart.
Credit: Image courtesy of University of Pennsylvania

During embryonic development, cells migrate to their eventual location in the adult body plan and begin to differentiate into specific cell types. Thanks to new research at the University of Pennsylvania, there is new insight into how these processes regulate tissues formation in the heart.

Related Articles


A developmental biologist at Penn's School of Veterinary Medicine, Jean-Pierre Saint-Jeannet, along with a colleague, Young-Hoon Lee of South Korea's Chonbuk National University, has mapped the embryonic region that becomes the part of the heart that separates the outgoing blood in Xenopus, a genus of frog.

Xenopus is a commonly used model organism for developmental studies, and is a particularly interesting for this kind of research because amphibians have a single ventricle and the outflow tract septum is incomplete.

In higher vertebrates, chickens and mice, the cardiac neural crest provides the needed separation for both circulations at the level of the outflow tract, remodeling one vessel into two. In fish, where there is no separation at all between the two circulations, the cardiac neural crest contributes to all regions of the heart.

"In the frog, we were expecting to find something that was in between fish and higher vertebrates, but that's not the case at all," said Saint-Jeannet. "It turns out that cardiac neural crest cells do not contribute to the outflow tract septum, they stop their migration before entering the outflow tract. The blood separation comes from an entirely different part of the embryo, known as the 'second heart field.'"

"As compared to other models the migration of the cardiac neural crest in amphibians has been dramatically changed through evolution," he said.

Saint-Jeannet's research will be published in the May 15 edition of the journal Development.

To determine where the neural crest cells migrated during development, the researchers labeled the embryonic cells with a fluorescent dye, then followed the path those marked cells took under a microscope. "We label the cardiac neural crest cells in one embryo and then graft them onto an embryo that is unlabeled. We let the embryo develop normally and look where those cells end up in the developing heart," said Saint-Jeannet.

Knowing these paths, and the biological signals that govern them, could have implications for human health.

"There are a number of pathologies in humans that have been associated with abnormal deployment of the cardiac neural crest, such as DiGeorge Syndrome," said Saint-Jeannet. "Among other developmental problems, these patients have an incomplete blood separation at the level of the outflow tract, because the cardiac neural crest does not migrate and differentiate at the proper location."

DiGeorge syndrome is present in about 1 in 4,000 live births, and often requires cardiac surgery to correct.

"Xenopus could be a great model to study the signals that cause those cells to migrate into the outflow tract of the heart,' said Saint-Jeannet. "If you can understand the signals that prevent or promote the colonization of this tissue, you can understand the pathology of something like DiGeorge syndrome and perhaps figure out what kind of molecule we can introduce there to force those cells to migrate further down."

This research was supported by Bridge Funds from the University of Pennsylvania and the School of Veterinary Medicine and by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Frog embryos lead to new understanding of cardiac development." ScienceDaily. ScienceDaily, 23 April 2011. <www.sciencedaily.com/releases/2011/04/110422115844.htm>.
University of Pennsylvania. (2011, April 23). Frog embryos lead to new understanding of cardiac development. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2011/04/110422115844.htm
University of Pennsylvania. "Frog embryos lead to new understanding of cardiac development." ScienceDaily. www.sciencedaily.com/releases/2011/04/110422115844.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins