Featured Research

from universities, journals, and other organizations

Practice can make search-and-rescue robot operators more accurate

Date:
May 5, 2011
Source:
Human Factors and Ergonomics Society
Summary:
Urban search and rescue task forces are essential for locating, stabilizing, and extricating people who become trapped in confined spaces following a catastrophic event. Sometimes the search area is too unstable for a live rescue team, so rescuers have turned to robots wielding video cameras. The rescuers control, or teleoperate, from a safe location. Teleoperation can be problematic, as robots frequently become stuck, which can destabilize the search area and hinder rescue operations.

Urban search and rescue (USAR) task forces are essential for locating, stabilizing, and extricating people who become trapped in confined spaces following a catastrophic event. Sometimes the search area is too unstable for a live rescue team, so rescuers have turned to robots wielding video cameras. Most recently, the USAR robots have been employed by rescuers following the devastating Japanese earthquake and tsunami. The rescuers control, or teleoperate, from a safe location. Teleoperation can be problematic, as robots frequently become stuck, which can destabilize the search area and hinder rescue operations.

"The World Trade Center site was the first major real-world evaluation of robots as tools for USAR," says Keith Jones, an HF/E researcher at Texas Tech University. "Overall, the robots performed well. One problem that did surface, however, was that the robots got stuck, a lot." Jones, with coauthors Brian Johnson and Elizabeth Schmidlin, published a study of USAR robot teleoperation in a special issue of the Journal of Cognitive Engineering and Decision Making on human-robot interaction.

In a series of experiments, Jones and colleagues asked participants to drive a USAR robot through the openings of various structures. Successful navigation through openings depended on the size of the robot and the operator's level of driving skill. Results indicated that, surprisingly, untrained operators could accurately judge the robot's size relative to the opening. However, operators perceived their skill at guiding the USAR robot through the opening as greater than their performance demonstrated. This judgment factors in the size of the robot, the operator's driving skill, and the size of the aperture. Jones et al. did find that, with practice, participants improved their driveability judgments.

"Our research seeks to understand why operators are getting their robots stuck," says Jones. "With that knowledge, hopefully, we can reduce the problem, and increase the amount of time that operators spend searching for survivors."


Story Source:

The above story is based on materials provided by Human Factors and Ergonomics Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. S. Jones, B. R. Johnson, E. A. Schmidlin. Teleoperation Through Apertures: Passability Versus Driveability. Journal of Cognitive Engineering and Decision Making, 2011; 5 (1): 10 DOI: 10.1177/1555343411399074

Cite This Page:

Human Factors and Ergonomics Society. "Practice can make search-and-rescue robot operators more accurate." ScienceDaily. ScienceDaily, 5 May 2011. <www.sciencedaily.com/releases/2011/05/110505142734.htm>.
Human Factors and Ergonomics Society. (2011, May 5). Practice can make search-and-rescue robot operators more accurate. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/05/110505142734.htm
Human Factors and Ergonomics Society. "Practice can make search-and-rescue robot operators more accurate." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505142734.htm (accessed October 20, 2014).

Share This



More Computers & Math News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com
Is Spotify Family A Great Deal Or Catching Up?

Is Spotify Family A Great Deal Or Catching Up?

Newsy (Oct. 20, 2014) Spotify Family lets you add a family member to your account for half price. Although users are excited, it's a move competitors have already made. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins