Featured Research

from universities, journals, and other organizations

A simple, mildly invasive solution for conserving historic buildings

Date:
May 10, 2011
Source:
Elhuyar Fundazioa
Summary:
Stone masonry arches form part of numerous historic buildings -- religious edifices, bridges, walkways and aqueducts. Although solid structures are involved, the environmental and historical conditions of the bearing load, use and accidental factors can cause their collapse. An industrial engineer in Spain studied an innovative system for the rehabilitation of these masonry arches.

One of the arches used for trials.
Credit: Image courtesy of Elhuyar Fundazioa

Stone masonry arches form part of numerous historic buildings -- religious edifices, bridges, walkways and aqueducts. Although solid structures are involved, the environmental and historical conditions of the bearing load, use and accidental factors can cause their collapse, with the consequent loss of architectural heritage. Industrial engineer Leire Garmendia studied an innovative system for the rehabilitation of these masonry arches, which is minimally invasive and more manageable than current methods.

Her European doctoral thesis, undertaken at the Tecnalia Construction Unit and presented at the University of the Basque Country (UPV/EHU), is entitled Rehabilitation of masonry arches by a compatible and minimally invasive strengthening system.

The solution proposed is based on a composite material known as BTRM (Basalt Textile-Reinforced Mortar). This involves a series of tissues of basalt embedded in an inorganic matrix (cement-free mortar modified with polymers). With her research, Ms Garmendia aimed at contributing greater knowledge on the behaviour of masonry arches, as well as on the efficaciousness of the BTRM system applied to such arches.

BTRM system

The researcher was able to show that, thanks to the physicochemical characteristics of BTRM components (resistance to high temperatures, permeability water vapour, flexibility, etc.), this composite material is compatible with the elements to be reinforced in arches. Moreover, it involves an easy-to-apply technology for buildings and especially for those with complex geometries like arches or vaulting. Also notable is its competitive cost compared to the more usual reinforcement methods employed to date.

The work carried out to arrive at these conclusions used a comprehensive, integral approach, with this reinforcement solution applied to stone buildings and, more specifically, to stonemasonry. First, mineralogical and mechanical characterisation tests were carried out on the materials making up the construction, both at the level of each constituent material and also for the overall structure; for the latter, 24 medium-scale, prismatic concrete test pieces were made, varying the material type (mortar and stone) and its bonding. Then the proposed reinforcement system put forward was looked at in more detail; carrying out physicochemical tests on the basalt tissue, the inorganic matrix and the tissue-matrix compound.

A third stage involved carrying out trials on twelve arches -- technical control of displacement to the point of reaching collapse. These arches were built and reinforced according to different criteria, both in terms of their typology (stonemasonry with or without mortar between the keystones/voussoirs) and in terms of reinforcement (without BTRM either with piers -- the lower surfaces of the arches -- , or with extrados -- the upper surfaces of the arches -- , or with both). Finally, various calculation methods were employed to mathematically evaluate the effect of the reinforcement solution proposed.

In conclusion, the experimental results reached with the PhD have shown the physicochemical compatibility between the BTRM system and the corresponding substrate of the stone construction to be reinforced, as well as validating its mechanical effectiveness in the reinforcement of arched structures. Thus, it was verified that this reinforcement solution could be the optimum alternative to traditional methods.


Story Source:

The above story is based on materials provided by Elhuyar Fundazioa. Note: Materials may be edited for content and length.


Cite This Page:

Elhuyar Fundazioa. "A simple, mildly invasive solution for conserving historic buildings." ScienceDaily. ScienceDaily, 10 May 2011. <www.sciencedaily.com/releases/2011/05/110509065746.htm>.
Elhuyar Fundazioa. (2011, May 10). A simple, mildly invasive solution for conserving historic buildings. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/05/110509065746.htm
Elhuyar Fundazioa. "A simple, mildly invasive solution for conserving historic buildings." ScienceDaily. www.sciencedaily.com/releases/2011/05/110509065746.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins