Featured Research

from universities, journals, and other organizations

Sensors that can stretch

Date:
May 13, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now developed sensors capable of expanding, in extreme cases, to twice their original length and so supple as to go virtually unnoticed when sewn into clothing.

Sensors that can stretch.
Credit: Image courtesy of Fraunhofer-Gesellschaft

Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now developed sensors capable of expanding, in extreme cases, to twice their original length and so supple as to go virtually unnoticed when sewn into clothing.

The car is racing far too fast toward the tail end of a traffic jam -- a crash is inevitable. The inflated airbag can protect the car's occupants. But if the person in the passenger seat is leaning too far forward, perhaps looking for something in a bag in the foot space, the force of the airbag can cause injury.

Researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg have now developed sensors that can help prevent such scenarios. These sensors can be integrated into the car seat, for example, where they detect not only if the seat is occupied but the position of the occupant as well. Is the person leaning over or sitting back in the seat? Is it a child or an adult? "The sensor films can measure stretch, as well as pressure," says Dr. Holger Böse, Scientific and Technical Manager of the ISC's Center Smart Materials. "They are made of a highly stretchable elastomeric film, coated on both sides with flexible electrodes. Whenever the sensor is stretched by changes in the shape of the seat, the sensor's thickness and, as a result, its electrical capacitance also change, which we can measure." In contrast to conventional, rather inelastic strain gauge strips, the new dielectric elastomeric sensors can stretch by up to 100 percent in extreme cases -- in other words, they can be drawn out to twice their size.

Depending on the field in which the smart materials are applied, it might be necessary to coat the elastomer film with multiple electrode pairs. This is the case, for example, when measuring the distribution of body pressure to determine a person's posture in a seat. Each pair of electrodes serves, in effect, as an independent sensor, measuring the local strain. "This is how we can say precisely where and to what degree the pressure has changed," explains Böse.

In making the sensors, the researchers choose the material that best meets the specific requirements of each application. The elastomer film consists of a polymer in which the individual molecules are chemically bonded with one another. The better the network of molecules, the sturdier the material -- similar to how a fine-mesh fishing net is stronger than one with a larger mesh. The degree of bonding in the polymer can be controlled by the scientists. "If the sensor is being used to measure high pressures, we produce a sturdier elastomer film as substrate; for measuring lower pressures, we use more pliant films," says Böse.

These sensors have numerous applications. For instance, they can be used to measure the pressure of gases. To do this, the elastomer film is stretched like a membrane across a ring. If gas exerts pressure on the sensor membrane, it deforms -- which is detected by the sensor. Pressure sensors are also useful in safety technology: If someone enters an area too close to a hazardous machine, sensors embedded in the floor can detect this and set off a warning. These intelligent materials could even be integrated into clothing: Here, they might be used to analyze sequences of movement, thereby helping athletes to optimize their training. Because they are so flexible, sensors that are part of clothing are hardly noticeable at all.

At the Sensor+Test trade fair from June 7-9, 2011, researchers will be performing a variety of demonstrations. In a few years -- the experts hope -- the sensors could be ready for market.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Sensors that can stretch." ScienceDaily. ScienceDaily, 13 May 2011. <www.sciencedaily.com/releases/2011/05/110513064103.htm>.
Fraunhofer-Gesellschaft. (2011, May 13). Sensors that can stretch. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2011/05/110513064103.htm
Fraunhofer-Gesellschaft. "Sensors that can stretch." ScienceDaily. www.sciencedaily.com/releases/2011/05/110513064103.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) — Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) — NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins