Featured Research

from universities, journals, and other organizations

Sensors that can stretch

Date:
May 13, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now developed sensors capable of expanding, in extreme cases, to twice their original length and so supple as to go virtually unnoticed when sewn into clothing.

Sensors that can stretch.
Credit: Image courtesy of Fraunhofer-Gesellschaft

Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now developed sensors capable of expanding, in extreme cases, to twice their original length and so supple as to go virtually unnoticed when sewn into clothing.

The car is racing far too fast toward the tail end of a traffic jam -- a crash is inevitable. The inflated airbag can protect the car's occupants. But if the person in the passenger seat is leaning too far forward, perhaps looking for something in a bag in the foot space, the force of the airbag can cause injury.

Researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg have now developed sensors that can help prevent such scenarios. These sensors can be integrated into the car seat, for example, where they detect not only if the seat is occupied but the position of the occupant as well. Is the person leaning over or sitting back in the seat? Is it a child or an adult? "The sensor films can measure stretch, as well as pressure," says Dr. Holger Böse, Scientific and Technical Manager of the ISC's Center Smart Materials. "They are made of a highly stretchable elastomeric film, coated on both sides with flexible electrodes. Whenever the sensor is stretched by changes in the shape of the seat, the sensor's thickness and, as a result, its electrical capacitance also change, which we can measure." In contrast to conventional, rather inelastic strain gauge strips, the new dielectric elastomeric sensors can stretch by up to 100 percent in extreme cases -- in other words, they can be drawn out to twice their size.

Depending on the field in which the smart materials are applied, it might be necessary to coat the elastomer film with multiple electrode pairs. This is the case, for example, when measuring the distribution of body pressure to determine a person's posture in a seat. Each pair of electrodes serves, in effect, as an independent sensor, measuring the local strain. "This is how we can say precisely where and to what degree the pressure has changed," explains Böse.

In making the sensors, the researchers choose the material that best meets the specific requirements of each application. The elastomer film consists of a polymer in which the individual molecules are chemically bonded with one another. The better the network of molecules, the sturdier the material -- similar to how a fine-mesh fishing net is stronger than one with a larger mesh. The degree of bonding in the polymer can be controlled by the scientists. "If the sensor is being used to measure high pressures, we produce a sturdier elastomer film as substrate; for measuring lower pressures, we use more pliant films," says Böse.

These sensors have numerous applications. For instance, they can be used to measure the pressure of gases. To do this, the elastomer film is stretched like a membrane across a ring. If gas exerts pressure on the sensor membrane, it deforms -- which is detected by the sensor. Pressure sensors are also useful in safety technology: If someone enters an area too close to a hazardous machine, sensors embedded in the floor can detect this and set off a warning. These intelligent materials could even be integrated into clothing: Here, they might be used to analyze sequences of movement, thereby helping athletes to optimize their training. Because they are so flexible, sensors that are part of clothing are hardly noticeable at all.

At the Sensor+Test trade fair from June 7-9, 2011, researchers will be performing a variety of demonstrations. In a few years -- the experts hope -- the sensors could be ready for market.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Sensors that can stretch." ScienceDaily. ScienceDaily, 13 May 2011. <www.sciencedaily.com/releases/2011/05/110513064103.htm>.
Fraunhofer-Gesellschaft. (2011, May 13). Sensors that can stretch. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/05/110513064103.htm
Fraunhofer-Gesellschaft. "Sensors that can stretch." ScienceDaily. www.sciencedaily.com/releases/2011/05/110513064103.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins