Featured Research

from universities, journals, and other organizations

Once thought a rival phase, antiferromagnetism coexists with superconductivity

Date:
May 25, 2011
Source:
Boston College
Summary:
Using neutron scattering and scanning tunneling microscopy, an international team of researchers found that antiantiferromagnetism co-exists -- rather than exclusively competing -- with superconductivity, according to a new study. The findings add further evidence to the team's earlier discovery that spin excitations play a crucial role in superconductivity.

High-temperature superconductivity can be looked at as a fight for survival at the atomic scale. In an effort to reach that point where electrons pair up and resistance is reduced to zero, superconductivity must compete with numerous, seemingly rival phases of matter.

Understanding those phases and whether or not they are rivals or complementary phenomena has consumed the attention of theoreticians and experimentalists in the quest to find superconducting materials capable of functioning at close-to-room temperature, a potential that has gone unrealized for nearly three decades.

One of those phases, antiferromagnetism (AFM), shows evidence of co-existing with superconductivity under examination by two high-tech procedures for measuring the activity of neutrons and electrons, an international team of physicists report in the current edition of the journal Nature Physics.

The findings add further evidence to the team's earlier discovery that spin excitations -- the dynamic harmonic oscillations of the magnetic moments associated with subatomic particles like electrons -- play a crucial role in superconductivity, said lead author and Boston College Associate Professor of Physics Vidya Madhavan.

The team -- including researchers from Boston College, Chinese Academy of Sciences, National Institute of Standards and Technology, Oak Ridge National Laboratory and the University of Tennessee, -- used neutron scattering and scanning tunneling microscopy to determine the interplay between AFM and superconductivity.

In certain solids, antiferromagnetism exists when adjacent ions -- each bearing a small magnet called a 'spin' -- line up in opposite directions throughout the material, neutralizing its magnetic force. Essentially, the magnetic atoms or ions pointed in one direction cancel out the magnetic atoms or ions pointing in the opposite direction.

Madhavan said all high temperature superconductors are close to the AFM phase. But it has been thought that AFM disappears, giving way to the emergence of superconductivity.

But tests on a copper oxide doped with additional electrons displayed activity that runs counter to the theory that the phases exclude each other, said Madhavan. Instead, AFM remains as superconductivity is reached in the high-temperature superconductor.

"The two phases actually compete and co-exist," said Madhavan. The neutron scattering and scanning tunneling microscopy revealed spin excitations in both modes -- AFM and superconductivity. While neutron scattering can directly probe spin excitations, STM can identify the behavior of the electrons. Together, the evidence shows spin excitations in the electronic spectrum, which signals that electron coupling is taking place.

The experimental evidence is crucial to better understanding superconductivity, Madhavan said.

"These strongly correlated materials are very hard to handle from a theoretical standpoint because there are so many possibilities," said Madhavan. "In this field we need to really understand these materials experimentally because theory is very difficult to do."

This experimental work gives additional evidence that spin excitations are critical to superconductivity, Madhavan said, "and it gives us a deeper understanding of the interplay between various phases."


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jun Zhao, F. C. Niestemski, Shankar Kunwar, Shiliang Li, P. Steffens, A. Hiess, H. J. Kang, Stephen D. Wilson, Ziqiang Wang, Pengcheng Dai, V. Madhavan. Electron-spin excitation coupling in an electron-doped copper oxide superconductor. Nature Physics, 2011; DOI: 10.1038/nphys2006

Cite This Page:

Boston College. "Once thought a rival phase, antiferromagnetism coexists with superconductivity." ScienceDaily. ScienceDaily, 25 May 2011. <www.sciencedaily.com/releases/2011/05/110523121335.htm>.
Boston College. (2011, May 25). Once thought a rival phase, antiferromagnetism coexists with superconductivity. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/05/110523121335.htm
Boston College. "Once thought a rival phase, antiferromagnetism coexists with superconductivity." ScienceDaily. www.sciencedaily.com/releases/2011/05/110523121335.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins