Featured Research

from universities, journals, and other organizations

Particle trap paves way for personalized medicine

Date:
May 24, 2011
Source:
Yale University
Summary:
Researchers have trapped individual charged particles in an aqueous solution using a method called "Paul trapping," which uses oscillating electric fields to confine the particles to a space only nanometers in size. The technique paves the way for DNA trapping and sequencing, which would allow for diagnostic testing, therapies and treatments based on each patient's individual genetic makeup.

Scientists were able to trap a single particle between four microelectrodes, paving the way for a faster and cheaper way to sequence DNA.
Credit: Weihua Guan and Mark Reed/Yale University

Sequencing DNA base pairs -- the individual molecules that make up DNA -- is key for medical researchers working toward personalized medicine. Being able to isolate, study and sequence these DNA molecules would allow scientists to tailor diagnostic testing, therapies and treatments based on each patient's individual genetic makeup.

But being able to isolate individual molecules like DNA base pairs, which are just two nanometers across -- or about 1/50,000th the diameter of a human hair -- is incredibly expensive and difficult to control. In addition, devising a way to trap DNA molecules in their natural aqueous environment further complicates things. Scientists have spent the past decade struggling to isolate and trap individual DNA molecules in an aqueous solution by trying to thread it through a tiny hole the size of DNA, called a "nanopore," which is exceedingly difficult to make and control.

Now a team led by Yale University researchers has proven that isolating individual charged particles, like DNA molecules, is indeed possible using a method called "Paul trapping," which uses oscillating electric fields to confine the particles to a space only nanometers in size. (The technique is named for Wolfgang Paul, who won the Nobel Prize for the discovery.) Until now, scientists have only been able to use Paul traps for particles in a vacuum, but the Yale team was able to confine a charged test particle -- in this case, a polystyrene bead -- to an accuracy of just 10 nanometers in aqueous solutions between quadruple microelectrodes that supplied the electric field.

Their device can be contained on a single chip and is simple and inexpensive to manufacture. "The idea would be that doctors could take a tiny drop of blood from patients and be able to run diagnostic tests on it right there in their office, instead of sending it away to a lab where testing can take days and is expensive," said Weihua Guan, a Yale engineering graduate student who led the project.

In addition to diagnostics, this "lab-on-a-chip" would have a wide range of applications, Guan said, such as being able to analyze how individual cells respond to different stimulation. While there are several other techniques for cell-manipulation available now, such as optical tweezers, the Yale team's approach actually works better as the size of the targets gets smaller, contrary to other approaches.

The team, whose findings appear in the May 23 Early Edition of the Proceedings of the National Academy of Sciences, used charged polystyrene beads rather than actual DNA molecules, along with a two-dimensional trap to prove that the technique worked. Next, they will work toward creating a 3-D trap using DNA molecules, which, at two nanometers, are even smaller than the test beads. They hope to have a working, 3-D trap using DNA molecules in the next year or two. The project is funded by a National Institutes of Health program that aims to sequence a patient's entire genome for less than $1,000.

"This is the future of personalized medicine," Guan said.

The project was directed by Mark Reed (Yale University) and Predrag Krstic (Oak Ridge National Laboratory). Other authors of the paper include Sony Joseph and Jae Hyun Park (Oak Ridge National Laboratory).


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Weihua Guan, Sony Joseph, Jae Hyun Park, Predrag S. Krstić, Mark A. Reed. Paul trapping of charged particles in aqueous solution. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1100977108

Cite This Page:

Yale University. "Particle trap paves way for personalized medicine." ScienceDaily. ScienceDaily, 24 May 2011. <www.sciencedaily.com/releases/2011/05/110523152340.htm>.
Yale University. (2011, May 24). Particle trap paves way for personalized medicine. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/05/110523152340.htm
Yale University. "Particle trap paves way for personalized medicine." ScienceDaily. www.sciencedaily.com/releases/2011/05/110523152340.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins