Featured Research

from universities, journals, and other organizations

Code green: Energy-efficient programming to curb computers' power use

Date:
May 31, 2011
Source:
University of Washington
Summary:
A new system called EnerJ helps computer programmers go green, letting them cut a program's energy consumption by up to 50 percent.

Soaring energy consumption by ever more powerful computers, data centers and mobile devices has many experts looking to reduce the energy use of these devices. Most projects so far focus on more efficient cooling systems or energy-saving power modes.

A University of Washington project sees a role for programmers to reduce the energy appetite of the ones and zeroes in the code itself. Researchers have created a system, called EnerJ, that reduces energy consumption in simulations by up to 50 percent, and has the potential to cut energy by as much as 90 percent. They will present the research next week in San Jose at the Programming Language Design and Implementation annual meeting.

"We all know that energy consumption is a big problem," said authorLuis Ceze, a UW assistant professor of computer science and engineering. "With our system, mobile phone users would notice either a smaller phone, or a longer battery life, or both. Computing centers would notice a lower energy bill."

The basic idea is to take advantage of processes that can survive tiny errors that happen when, say, voltage is decreased or correctness checks are relaxed. Some examples of possible applications are streaming audio and video, games and real-time image recognition for augmented-reality applications on mobile devices.

"Image recognition already needs to be tolerant of little problems, like a speck of dust on the screen," said co-author Adrian Sampson, a UW doctoral student in computer science and engineering. "If we introduce a few more dots on the image because of errors, the algorithm should still work correctly, and we can save energy."

The UW system is a general framework that creates two interlocking pieces of code. One is the precise part -- for instance, the encryption on your bank account's password. The other portion is for all the processes that could survive occasional slipups.

The software creates an impenetrable barrier between the two pieces.

"We make it impossible to leak data from the approximate part into the precise part," Sampson said. "You're completely guaranteed that can't happen."

While computers' energy use is frustrating and expensive, there is also a more fundamental issue at stake. Some experts believe we are approaching a limit on the number of transistors that can run on a single microchip. The so-called "dark silicon problem" says that as we boost computer speeds by cramming more transistors onto each chip, there may no longer be any way to supply enough power to the chip to run all the transistors.

The UW team's approach would work like a dimmer switch, letting some transistors run at a lower voltage. Approximate tasks could run on the dimmer regions of the chip.

"When I started thinking about this, it became more and more obvious that this could be applied, at least a little bit, to almost everything," Sampson said. "It seemed like I was always finding new places where it could be applied, at least in a limited way."

Researchers would use the program with a new type of hardware where some transistors have a lower voltage, the force on electrons in the circuit. This slightly increases the risk of random errors; EnerJ shuttles only approximate tasks to these transistors.

"If you can afford one error every 100,000 operations or so, you can already save a lot of energy," Ceze said.

Other ways to use hardware to save energy are lowering the refresh rate and reducing voltage of the memory chip.

Simulations of such hardware show that running EnerJ would cut energy by about 20 to 25 percent, on average, depending on the aggressiveness of the approach. For one program the energy saved was almost 50 percent. Researchers are now designing hardware to test their results in the lab.

Today's computers could also use EnerJ with a purely software-based approach. For example, the computer could round off numbers or skip some extra accuracy checks on the approximate part of the code to save energy -- researchers estimate between 30 and 50 percent savings based on software alone.

Combining the software and hardware methods they believe they could cut power use by about 90 percent.

"Our long-term goal would be 10 times improvement in battery life," Ceze said. "I don't think it is totally out of the question to have an order of magnitude reduction if we continue squeezing unnecessary accuracy."

The program is called EnerJ because it is an extension for the Java programming language. The team hopes to release the code as an open-source tool this summer.

Co-authors of the paper are UW computer science and engineering professor Dan Grossman, postdoctoral researcher Werner Dietl, graduate student Emily Fortuna and undergraduate Danushen Gnanapragasam. Also involved in the research is doctoral student Hadi Esmaeilzadeh.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Hannah Hickey. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Code green: Energy-efficient programming to curb computers' power use." ScienceDaily. ScienceDaily, 31 May 2011. <www.sciencedaily.com/releases/2011/05/110531155354.htm>.
University of Washington. (2011, May 31). Code green: Energy-efficient programming to curb computers' power use. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/05/110531155354.htm
University of Washington. "Code green: Energy-efficient programming to curb computers' power use." ScienceDaily. www.sciencedaily.com/releases/2011/05/110531155354.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins