Featured Research

from universities, journals, and other organizations

Lasers used to form 3-D crystals made of nanoparticles

Date:
June 3, 2011
Source:
University of Michigan
Summary:
Physicists have used the electric fields generated by intersecting laser beams to trap and manipulate thousands of microscopic plastic spheres, thereby creating 3-D arrays of optically induced crystals.

Still image of a video showing microscope images of the crystals forming.
Credit: From a video provided by Georg Raithel, University of Michigan

University of Michigan physicists used the electric fields generated by intersecting laser beams to trap and manipulate thousands of microscopic plastic spheres, thereby creating 3-D arrays of optically induced crystals.

The technique could someday be used to analyze the structure of materials of biological interest, including bacteria, viruses and proteins, said U-M physicist Georg Raithel.

Raithel is co-author of a research paper on the topic published online May 31 in the journal Physical Review E. The other author is U-M research fellow Betty Slama-Eliau.

The standard method used to characterize biological molecules like proteins involves crystallizing them, then analyzing their structure by bombarding the crystals with X-rays, a technique called X-ray crystallography. But the method cannot be used on many of the proteins of highest interest -- such as cell-membrane proteins -- because there's no way to crystallize those molecules.

"So we came up with this idea that one could use, instead of a conventional crystal, an optically induced crystal in order to get the crystallization of a sample that could be suitable for structural analysis," said Raithel, professor of physics and associate chair of the department.

To move toward that goal, Raithel and his colleagues are developing the laser technique using microscopically small plastic spheres instead of the molecules. Other researchers have created 3-D optically induced crystals, but Raithel said the crystals his team created are denser than those previously achieved.

The process involves shining laser beams through two opposed microscope lenses, one directly beneath the other. Two infrared laser beams are directed through each lens, and they meet at a common focal point on a microscope slide that holds thousands of plastic nanoparticles suspended in a drop of water.

The intersecting laser beams create electric fields that vary in strength in a regular pattern that forms a 3-D grid called an optical lattice. The nanoparticles get sucked into regions of high electric-field strength, and thousands of them align to form optically induced crystals. The crystals are spherical in shape and about 5 microns in diameter. A micron is one millionth of a meter.

Imagine an egg crate containing hundreds of eggs. The cardboard structure of the crate is the optical lattice, and each of the eggs represents one of the nanoparticles. Stack several crates on top of each other and you get a 3-D crystal structure.

"The crate is the equivalent of the optical lattice that the laser beams make," Raithel said. "The structure of the crystal is determined by the egg carton, not by the eggs."

The optical crystals dissipate as soon as the laser is switched off.

The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Slama-Eliau, G. Raithel. Three-dimensional arrays of submicron particles generated by a four-beam optical lattice. Physical Review E, 2011; 83 (5) DOI: 10.1103/PhysRevE.83.051406

Cite This Page:

University of Michigan. "Lasers used to form 3-D crystals made of nanoparticles." ScienceDaily. ScienceDaily, 3 June 2011. <www.sciencedaily.com/releases/2011/06/110601091441.htm>.
University of Michigan. (2011, June 3). Lasers used to form 3-D crystals made of nanoparticles. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/06/110601091441.htm
University of Michigan. "Lasers used to form 3-D crystals made of nanoparticles." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601091441.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins