Featured Research

from universities, journals, and other organizations

New technology could inspire brain implant for detecting and treating seizures

Date:
June 2, 2011
Source:
Institute of Physics
Summary:
Tiny electrodes have been coated with a drug-loaded polymer in an attempt to design an implant capable of detecting a number of neurological symptoms, such as those associated with an epileptic seizure, and treating them simultaneously.

Tiny electrodes have been coated with a drug-loaded polymer in an attempt to design an implant capable of detecting a number of neurological symptoms, such as those associated with an epileptic seizure, and treating them simultaneously.

In a study published June 2, 2011 in IOP Publishing's Journal of Neural Engineering, researchers have developed a novel technology to precisely modulate individual neurons in rats, allowing the molecular, neuronal, and circuit functions to be analysed with unprecedented precision.

Based on the electrical conducting properties of the polymer Polypyrrole (PPy), the researchers, from the University of Pittsburgh, have demonstrated a novel way of loading specific drugs onto an array of electrodes and triggering their release into cultured neurons, allowing for a more precise insight into the cellular mechanisms of neuronal networks.

On top of this, the researchers have also demonstrated how the release of drugs could be informed, in real-time, by the recording of activity in neurons, a step essential for creating a closed-loop system that both diagnoses and treats symptoms simultaneously, creating several potential applications.

Co-author Professor X Tracy Cui said, "We envision an implanted device in the future that will monitor the brain activity, detect or predict an onset of epileptic seizure, and send the command to the electrode at the most appropriate location, releasing an anti-convulsive drug to prevent the seizure."

Multielectrode arrays (MEAs) -- small devices that can control or record the electrical circuitry in neurons -- have long been used as a way of measuring neuronal activity and transforming this into an action; technologies such as ear implants and cardiac pacemakers have benefited from them.

Recent advances, however, have allowed MEAs to be coupled with devices that release specific drugs in order to test how neural circuits function, as well as investigating the underlying mechanisms within neuronal cells.

The researchers coated PPy, containing all of the necessary neurochemicals, onto an MEA. Whilst positioned on the cultured rat brain, the polymer was electrically stimulated, causing the neurochemicals to dissociate and diffuse away to the necessary locations.

Results showed that the drugs retained their activity and function with spatial and temporal precision.

Current state-of-the-art drug delivery methods, such as picospritzer and ionotopheriesis, give researchers a greater understanding of cellular mechanisms of neural dynamics; however, both of these techniques are limited to a few sites and face the risk of drug leakage.

By having the required neurochemicals dissociate from the polymer, this technique avoids the need for an external reservoir containing the drug, which would greatly increase the size of a potential implant and could cause tissue damage.

Professor Cui continues, "By directly loading a drug of interest onto an individual electrode site and using an electrical signal to trigger its release, we can precisely control the drug delivery site with ease. Additionally, our technology can be used for a combination of exogenous chemicals such as subtype-specific receptor antagonists, thus potentially allowing for more precise dissection of neural circuit function at the molecular level."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal References:

  1. Stauffer et al. Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. J. Neural Eng., 2011 [link]
  2. Stauffer et al. Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. Journal of Neural Engineering, 2011; [link]

Cite This Page:

Institute of Physics. "New technology could inspire brain implant for detecting and treating seizures." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110601204046.htm>.
Institute of Physics. (2011, June 2). New technology could inspire brain implant for detecting and treating seizures. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/06/110601204046.htm
Institute of Physics. "New technology could inspire brain implant for detecting and treating seizures." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601204046.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WHO Calls for Ban on E-Cigarette Sales to Minors

WHO Calls for Ban on E-Cigarette Sales to Minors

AFP (Aug. 26, 2014) The World Health Organization called Tuesday on governments should ban the sale of e-cigarettes to minors, warning that they pose a "serious threat" to foetuses and young people. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Newsy (Aug. 26, 2014) A new study found fewer deaths from prescription drug overdoses in states that have legalized medical marijuana. But experts disagree on the results. Video provided by Newsy
Powered by NewsLook.com
Official: British Ebola Sufferer Receiving Experimental Drug

Official: British Ebola Sufferer Receiving Experimental Drug

AFP (Aug. 26, 2014) A British nurse infected with Ebola while working in Sierra Leone is being given the same experimental drug used on two US missionaries who have recovered for the disease, doctors in London say. Duration: 00:44 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins