Featured Research

from universities, journals, and other organizations

Survival niche for cancer cells

Date:
June 17, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
Cancer cells do not grow equally well everywhere in the body. Often, they first create the conditions in which they can grow. Immunologists and hematologists have now shown that specific forms of lymphoma also create their own survival niche.

Cancer cells do not grow equally well everywhere in the body. Often, they first create the conditions in which they can grow. Many years ago researchers discovered that solid tumors attract blood vessels to ensure their supply of nutrients by secreting specific factors. Now the immunologist Dr. Uta Höpken (Tumor and Immunogenetics Research Group at the Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch in the Helmholtz Association) and the hematologist Dr. Armin Rehm (Charité -- Virchow-Klinikum, Department of Hematology, Oncology and Tumor Immunology, MDC) have shown for the first time that specific forms of lymphoma also create their own survival niche.

Lymphoma is the term used to describe a group of cancers of the lymphatic system. Lymphoma cells are abnormal immune cells (B cells or T cells), a specific group of white blood cells (lymphocytes). Using a mouse model, Dr. Rehm and Dr. Höpken demonstrated for the first time that the dissemination of lymphoma cells and their accumulation in the lymph nodes or spleen is dependent on specific signaling or growth substances, the chemokines CCL19 or CCL21.

Chemokines normally attract immune cells to a site of infection or inflammation. As former immune cells, lymphoma cells have special antennas (receptors) on their cell surface to which these signaling substances bind. If the lymphoma cells receive the signal via their CCR7 receptor, they migrate into the lymph nodes and into specific areas within the spleen.

Paradox

CCR7 not only mediates the migration of the lymphoma cells, it is also apparently crucial for their development and survival. As the two researchers showed in a next step, the lymphoma cells proliferate in the lymph nodes or in the spleen very slowly if this receptor is absent.

However, with the aid of CCR7 the cancer cells find their survival niche in the T-cell zones of the lymph nodes and the spleen. In these zones T cells are usually made fit for defense. "It is paradoxical that lymphoma cells as former B cells find an absolutely optimal microenvironment for their growth in these T-cell zones," Dr. Höpken said.

There the lymphoma cells crosstalk with stromal cells (connective tissue cells), which subsequently secrete increased quantities of the chemokines CCL19/CCL21. The CCR7 receptor not only mediates the homing of additional lymphoma cells to the lymph nodes or spleen, but also stimulates their proliferation.

On the other hand, the lymphoma cells themselves secrete a signaling substance (lymphotoxin) which induces the stromal cells to secrete more and more chemokines. In this way the lymphoma cells ensure their survival. This may also explain why some lymphomas are so aggressive.

In mice the researchers succeeded in breaking this vicious cycle. Using an active substance that blocks the binding of the lymphotoxins to the stromal cells, they were able to stop tumor growth. "In the future," Dr. Rehm said, "it may be that therapeutic strategies will not target the lymphoma cells directly, but rather the connective tissue so vital for their survival."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Rehm, A. Mensen, K. Schradi, K. Gerlach, S. Wittstock, S. Winter, G. Buchner, B. Dorken, M. Lipp, U. E. Hopken. Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs. Blood, 2011; DOI: 10.1182/blood-2010-11-321265

Cite This Page:

Helmholtz Association of German Research Centres. "Survival niche for cancer cells." ScienceDaily. ScienceDaily, 17 June 2011. <www.sciencedaily.com/releases/2011/06/110606113108.htm>.
Helmholtz Association of German Research Centres. (2011, June 17). Survival niche for cancer cells. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/06/110606113108.htm
Helmholtz Association of German Research Centres. "Survival niche for cancer cells." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606113108.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins