Featured Research

from universities, journals, and other organizations

Compaction bands in sandstone are permeable: Findings could aid hydraulic fracturing, other fluid extraction techniques

Date:
June 7, 2011
Source:
California Institute of Technology
Summary:
When geologists survey an area of land for the potential that gas or petroleum deposits could exist there, they must take into account the composition of rocks that lie below the surface. Previous research had suggested that compaction bands might act as barriers to the flow of oil or gas. Now, researchers have analyzed X-ray images of sandstone and revealed that compaction bands are actually more permeable than earlier models indicated.

Compaction bands at multiple scales ranging from the field scale to the specimen scale to the meso and grain scale. At the field scale, picture shows the presence of narrow tabular structures within the host rock in the Valley of Fire. At the grain scale, images show clear differences in porosity (dark spots) density. This research aims at quantifying the impact of grain scale features in macroscopic physical properties that control behavior all the way to the field scale.
Credit: José Andrade/Caltech

When geologists survey an area of land for the potential that gas or petroleum deposits could exist there, they must take into account the composition of rocks that lie below the surface. Take, for instance, sandstone -- a sedimentary rock composed mostly of weakly cemented quartz grains. Previous research had suggested that compaction bands -- highly compressed, narrow, flat layers within the sandstone -- are much less permeable than the host rock and might act as barriers to the flow of oil or gas.

Related Articles


Now, researchers led by José Andrade, associate professor of civil and mechanical engineering at the California Institute of Technology (Caltech), have analyzed X-ray images of Aztec sandstone and revealed that compaction bands are actually more permeable than earlier models indicated. While they do appear to be less permeable than the surrounding host rock, they do not appear to block the flow of fluids. Their findings were reported in the May 17 issue of Geophysical Research Letters.

The study includes the first observations and calculations that show fluids have the ability to flow in sandstone that has compaction bands. Prior to this study, there had been inferences of how permeable these formations were, but those inferences were made from 2D images. This paper provides the first permeability calculations based on actual rock samples taken directly from the field in the Valley of Fire, Nevada. From the data they collected, the researchers concluded that these formations are not as impermeable as previously believed, and that therefore their ability to trap fluids -- like oil, gas, and CO2 -- should be measured based on 3D images taken from the field.

"These results are very important for the development of new technologies such as CO2 sequestration -- removing CO2 from the atmosphere and depositing it in an underground reservoir -- and hydraulic fracturing of rocks for natural gas extraction," says Andrade. "The quantitative connection between the microstructure of the rock and the rock's macroscopic properties, such as hydraulic conductivity, is crucial, as physical processes are controlled by pore-scale features in porous materials. This work is at the forefront of making this quantitative connection."

The research team connected the rocks' 3D micromechanical features -- such as grain size distribution, which was obtained using microcomputed tomography images of the rocks to build a 3D model -- with quantitative macroscopic flow properties in rocks from the field, which they measured on many different scales. Those measurements were the first ever to look at the three-dimensional ability of compaction bands to transmit fluid. The researchers say the combination of these advanced imaging technologies and multiscale computational models will lead to unprecedentedly accurate measurements of crucial physical properties, such as permeability, in rocks and similar materials.

Andrade says the team wants to expand these findings and techniques. "An immediate idea involves the coupling of solid deformation and chemistry," he says. "Accounting for the effect of pressures and their potential to exacerbate chemical reactions between fluids and the solid matrix in porous materials, such as compaction bands, remains a fundamental problem with multiple applications ranging from hydraulic fracturing for geothermal energy and natural gas extraction, to applications in biological tissue for modeling important processes such as osteoporosis. For instance, chemical reactions take place as part of the process utilized in fracturing rocks to enhance the extraction of natural gas."

Other coauthors of the paper, "Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations," are WaiChing Sun, visiting scholar at Caltech; John Rudnicki, professor of civil and environmental engineering at Northwestern University; and Peter Eichhubl, research scientist in the Bureau of Economic Geology at the University of Texas at Austin.

The work was partially funded by the Geoscience Research Program of the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Katie Neith. Note: Materials may be edited for content and length.


Journal Reference:

  1. WaiChing Sun, José E. Andrade, John W. Rudnicki, Peter Eichhubl. Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations. Geophysical Research Letters, 2011; 38 (10) DOI: 10.1029/2011GL047683

Cite This Page:

California Institute of Technology. "Compaction bands in sandstone are permeable: Findings could aid hydraulic fracturing, other fluid extraction techniques." ScienceDaily. ScienceDaily, 7 June 2011. <www.sciencedaily.com/releases/2011/06/110606131800.htm>.
California Institute of Technology. (2011, June 7). Compaction bands in sandstone are permeable: Findings could aid hydraulic fracturing, other fluid extraction techniques. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/06/110606131800.htm
California Institute of Technology. "Compaction bands in sandstone are permeable: Findings could aid hydraulic fracturing, other fluid extraction techniques." ScienceDaily. www.sciencedaily.com/releases/2011/06/110606131800.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) — For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Raw: Buffalo Residents Digging Out, Helping out

Raw: Buffalo Residents Digging Out, Helping out

AP (Nov. 22, 2014) — Hundreds of volunteers joined a 'shovel brigade' in Buffalo, New York on Saturday, as the city was living up to its nickname, "The City of Good Neighbors." Video provided by AP
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins