Featured Research

from universities, journals, and other organizations

Biochemical weakness of malaria parasite discovered; Vaccine to be developed

Date:
June 7, 2011
Source:
University of Copenhagen
Summary:
Every year, 10,000 pregnant women and up to 200,000 newborn babies are killed by the malaria parasite. Doctors all around the globe have for years been looking in vain for a medical protection, and now researchers in Denmark have found the biochemically weakness of the lethal malaria parasite, and will now start developing a vaccine to combat pregnancy related malaria.

Every year, 10,000 pregnant women and up to 200,000 newborn babies are killed by the malaria parasite. Doctors all around the globe have for years been looking in vain for a medical protection, and now researchers from the University of Copenhagen have found the biochemically weakness of the lethal malaria parasite.

Related Articles


With a grant of 15 million DKK (approximately 3 million USD) from the Danish National Advanced Technology Foundation and close corporation with two Danish biotech companies, the researchers can now start developing the vaccine and take it through the first trials to test its safety.

The malaria parasite travels via the spit of an infected mosquito to the liver of the new host, where it spreads to the red blood corpuscles and starts to reproduce itself.

"Pregnant women and children below the age of five years are particularly vulnerable to malaria because of the parasite's survival mechanisms. The parasite has a protein hook designed to attach it to the placenta and this leads to amnesia of the mother who in worst case can die or deliver prematurely. This increases the maternal mortality -- and infant mortality," explains Associate Professor Ali Salanti from the University of Copenhagen's Centre for Medical Parasitology who manages the project.

The parasite cheats the immune system

The body's immune system normally attacks any foreign body but since our spleen constantly filters our blood and removes ruined or deform blood cells, the body's natural defense does not need to check the blood. And the malaria parasite exploits this fact.

An infected red blood corpuscle is more stiff than in its normal state and this would usually trigger the spleen to destroy the cell and parasite, but the malaria parasite has an advanced arsenal of protein hooks. With these hooks the parasite attaches itself to the inner side of the blood vessel and even if our immune system succeeds in defeating one hook, the parasite has 60 different hooks, which again differ from one malaria parasite to another.

Vaccine development is tricky

Researchers have for years been looking for a vaccine which can attack the malaria parasite's specific placenta hook. This is tricky not least due to the fact that the parasite's hooks are long proteins which are difficult to produce artificially in the lab when developing of a vaccine.

After intensive research efforts, the researchers have now succeeded in identifying a fragment of the placenta hook (VAR2CSA) which not only is crucial for the parasite's ability to attach itself to the placenta, but also is possible to produce artificially for a vaccine.

"A vaccine must stimulate the immune system to quickly attack something foreign in the body. Therefore, it was a matter of finding the part of the placenta hook, which the parasite cannot manage without and which we could target a vaccine against," says Associate Professor Ali Salanti.

Private public partnership to mass produce vaccine

With the 15 Million DKK from the Danish National Advanced Technology Foundation, Ali Salanti and his colleagues collaborate with the biotech companies ExpreS2ion Biotechnologies and CMC Biologics A/S to develop a method for mass production of the vaccine.

Once this has fallen into place, the researchers can start up the clinical trials on animals and human beings. If the trials are successful the parasistologists from the University of Copenhagen and their partners will make a significant contribution in reaching the UN's Millennium Development goal number 4 and 5. These two goals encourage every country in the world to work on lowering global child mortality with two thirds and maternal mortality with three quarters.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Cite This Page:

University of Copenhagen. "Biochemical weakness of malaria parasite discovered; Vaccine to be developed." ScienceDaily. ScienceDaily, 7 June 2011. <www.sciencedaily.com/releases/2011/06/110607094511.htm>.
University of Copenhagen. (2011, June 7). Biochemical weakness of malaria parasite discovered; Vaccine to be developed. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/06/110607094511.htm
University of Copenhagen. "Biochemical weakness of malaria parasite discovered; Vaccine to be developed." ScienceDaily. www.sciencedaily.com/releases/2011/06/110607094511.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins