Featured Research

from universities, journals, and other organizations

Temperature tracking device for packages may have climate metrology applications

Date:
June 10, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers are working to reduce the uncertainty associated with climate change measurements using a mobile temperature-sensing technology made for tracking delicate or perishable, high-value packages in transit.

Developed by international shipper FedEx and tested with help from NIST, the Senseaware device connects to cell phone networks to provide users with near real-time information on a package’s precise location, temperature, humidity, pressure, acceleration, elevation and exposure to light. NIST researchers plan to deploy the technology as part of a pilot project to monitor and improve climate measurements.
Credit: Strouse/NIST

National Institute of Standards and Technology (NIST) researchers are working to reduce the uncertainty associated with climate-change measurements using a mobile temperature-sensing technology made for tracking delicate or perishable, high-value packages in transit. Developed by international shipper FedEx and tested with help from NIST, the device connects to cell phone networks to provide users with near real-time information on the package's precise location, temperature, humidity, pressure, acceleration, elevation and exposure to light.

Senseaware tag

Developed by international shipper FedEx and tested with help from NIST, the Senseaware device connects to cell phone networks to provide users with near real-time information on a package's precise location, temperature, humidity, pressure, acceleration, elevation and exposure to light. NIST researchers plan to deploy the technology as part of a pilot project to monitor and improve climate measurements.

Historically, package tracking has provided information to customers about a package's route and anticipated delivery date and time. Seeking to provide customers with more information on the "vital signs" of their shipments, the company approached NIST about the feasibility of achieving accurate temperature measurements in a mobile device.

"The primary function of the device is to monitor temperature-sensitive materials such as medicines and vaccines, tissues, organs, blood, etc.," says Greg Strouse, leader of NIST's Temperature and Humidity Group. "We tested the beta units when they were transmitting information and when they were simply recording it, and we found that the devices create heat when transmitting, which throws off the measurement. To fix that, we developed performance data and an algorithm that kicks in to correct the temperature measurement when the device is actively communicating."

Once all the kinks were ironed out, Strouse and his group worked with the National Voluntary Laboratory Accreditation Program (NVLAP), a NIST service that tests and accredits independent testing laboratories, to help the company find a capable, independent lab to test the devices en masse.

The result was a palm-sized device that a customer can place inside a package. The customer can monitor the transit of their package in real time through a Web-based interface. A GPS receiver in the device provides location information, and the device sends updates on its status wherever it can get a cell phone signal. It even monitors the shipments while aboard airplanes and transmits the data upon landing.

Accurate to within 0.02 degrees Celsius and able to send and store data for up to 30 days, the technology lent itself quite easily to another NIST project focused on measurements for climate change. The device's connectivity and accuracy make it ideal for monitoring surface air temperature, which climate scientists often use to evaluate the performance of their models.

"Because continuous measurement can be more informative than daily minimum and maximum temperature observations, we're looking into the potential for using these devices as prototype weather stations and comparing their results with the analog and digital style instruments used for weather observations," says Strouse. "Our goals are to better understand and quantify the measurement uncertainty of both the historical analog and current digital measurement systems as well as improving the science base for metrology used in surface air temperature measurements."

NIST is planning to station three of the devices at locations around the NIST campus in Gaithersburg, Md. The group intends to also erect a tower to mount one of the devices to better understand 3-D temperature gradient mapping strategies near the surface.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Temperature tracking device for packages may have climate metrology applications." ScienceDaily. ScienceDaily, 10 June 2011. <www.sciencedaily.com/releases/2011/06/110608123143.htm>.
National Institute of Standards and Technology (NIST). (2011, June 10). Temperature tracking device for packages may have climate metrology applications. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2011/06/110608123143.htm
National Institute of Standards and Technology (NIST). "Temperature tracking device for packages may have climate metrology applications." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608123143.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins