Featured Research

from universities, journals, and other organizations

Crucial molecule involved in spread of breast cancer identified; Findings suggest strategy for halting metastasis

Date:
June 8, 2011
Source:
Albert Einstein College of Medicine
Summary:
Researchers have identified a key player in the spread of breast cancer. The findings identify a critical molecule that helps cancer spread beyond the primary tumor. The research highlights a potential new strategy against metastatic disease.

Researchers at Albert Einstein College of Medicine of Yeshiva University have identified a key player in the spread of breast cancer. The findings, published in the online edition of Nature, identify a critical molecule that helps cancer spread beyond the primary tumor. The research highlights a potential new strategy against metastatic disease. The study's senior author is Jeffrey Pollard, Ph.D., professor of developmental and molecular biology and of obstetrics & gynecology and women's health at Einstein. He also holds the Louis Goldstein Swan Chair in Women's Cancer Research and is the deputy director of the Albert Einstein Cancer Center.

People rarely die from their primary (original) tumor. Instead, most cancer deaths occur because the cancer has spread, or metastasized, to other parts of the body. "By focusing on sites where cancer had spread, we were able to detect a molecule that stimulates metastasis," said Dr. Pollard. "This raises the possibility that metastasis could be kept from progressing -- or even prevented -- if the stimulating molecule could be blocked. This we achieved in mouse models of breast cancer."

Metastasis begins when cells break away from the primary tumor and gain the ability to move on their own. These cells invade nearby blood vessels (a process known as intravasation) and are carried by the bloodstream to other parts of the body. The bloodborne tumor cells then escape from vessels in a process known as extravasation. Once these tumor cells escape from the vessels, they seed new and deadly tumors that grow in these distant locations.

In previous studies, Dr. Pollard and his research team have shown that macrophages -- immune system cells whose functions include fighting infections -- actually promote the spread of cancer. His research has shown that macrophages not only assist tumor cells during both intravasation and extravasation but also help those wayward cells take root in their new locations and grow into metastatic tumors. In the current study, Dr. Pollard and colleagues investigated the process by which these macrophages are recruited to metastatic sites and subsequently promote tumor-cell extravasation, seeding and tumor growth.

Using models of human and mouse breast cancer, the researchers demonstrated that when breast tumor cells travel to the lung, these cells secrete CCL2, a chemokine molecule (i.e., one that attracts cells). CCL2 attracts immune cells called inflammatory monocytes -- in particular, those bearing receptors for CCL2, which then develop into macrophages. The monocytes and macrophages "invited" by CCL2 signaling then facilitate extravasation -- the critical step in metastasis in which bloodborne tumor cells cross the vessel wall and implant in nearby tissue. One way monocytes help tumor cells escape from blood vessels and cause metastasis, the Einstein researchers found, is by secreting vascular endothelial growth factor, or VEGF, a substance that makes blood vessels leaky at the site where tumor cells exit from them.

Once the tumor cells are seeded, inflammatory monocytes continue to flock to the metastatic site -- now attracted by CCL2 secreted not only by the tumor cells but also by nearby lung tissue that the tumor cells have targeted. In turn, these continuously recruited monocytes and the resultant macrophages promote the growth of the emerging metastatic tumor.

To confirm their findings, the researchers used anti-CCL2 antibodies to suppress CCL2 signaling in a mouse model of human metastasis -- with striking results. In lungs challenged with metastatic tumor cells, the anti-CCL2 antibodies inhibited the influx of inflammatory monocotyes and macrophages to the metastatic sites, and the number of metastatic sites that developed in the lungs was markedly reduced. In addition, the mice lived much longer when CCL2 signaling was blocked.

"These findings have potential implications for therapy, since in human breast cancer we know that CCL2 expression and macrophage infiltration are associated with poor prognosis and metastatic disease," said Dr. Pollard. "If we can develop ways to inhibit these processes, we might be able to slow or stop breast cancer from spreading."

Dr. Pollard's coauthors include Bin-Zhi Qian, Ph.D.; Jiufeng Li; Hui Zhang; Takanori Kitamura, Ph.D.; and Jinghang Zhang, M.D., of Einstein and Liam R. Campion, M.S.; Elizabeth A. Kaiser; and Linda A. Snyder, Ph.D., of Ortho Biotech Oncology R&D, Radnor, PA. The research was funded by grants from the National Cancer Institute of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bin-Zhi Qian, Jiufeng Li, Hui Zhang, Takanori Kitamura, Jinghang Zhang, Liam R. Campion, Elizabeth A. Kaiser, Linda A. Snyder, Jeffrey W. Pollard. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011; DOI: 10.1038/nature10138

Cite This Page:

Albert Einstein College of Medicine. "Crucial molecule involved in spread of breast cancer identified; Findings suggest strategy for halting metastasis." ScienceDaily. ScienceDaily, 8 June 2011. <www.sciencedaily.com/releases/2011/06/110608131326.htm>.
Albert Einstein College of Medicine. (2011, June 8). Crucial molecule involved in spread of breast cancer identified; Findings suggest strategy for halting metastasis. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/06/110608131326.htm
Albert Einstein College of Medicine. "Crucial molecule involved in spread of breast cancer identified; Findings suggest strategy for halting metastasis." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608131326.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins