Featured Research

from universities, journals, and other organizations

New 3-D tumor model: Step toward speeding cancer drug research

Date:
June 13, 2011
Source:
American Institute of Physics
Summary:
A team of scientists has developed a way to coax tumor cells in the lab to grow into 3-D spheres. Their discovery takes advantage of an earlier technique of producing spherical cavities in a common polymer and promises more accurate tests of new cancer therapies.

A team of scientists has developed a way to coax tumor cells in the lab to grow into 3-D spheres. Their discovery takes advantage of an earlier technique of producing spherical cavities in a common polymer and promises more accurate tests of new cancer therapies.

As team leader Michael R. King, Ph.D., of Cornell University explains, "Sometimes engineering research tends to be a case of a hammer looking for a nail. We knew our previous discovery was new and it was cool. And now we know it's useful."

Three years ago, the team -- in collaboration with Lisa DeLouise, Ph.D., MPD, of Rochester, N.Y. -- perfected a low-cost, easy fabrication technique to make spherical cavities in PDMS (polydimethylsiloxane), a widely used silicon organic polymer. More recently, the Cornell team discovered that these cavities could be used as a scaffolding to grow numerous tumor spheroids, which could serve as realistic models for cancer cells. The Cornell team's work appears in the current issue of Biomicrofluidics, a publication of the American Institute of Physics.

The three-dimensional spheroids hold the potential to speed cancer drug discovery by providing a realistic and easily accessible substrate on which to test drugs. Their 3-D nature is an asset because in the body, tumor cells grow in 3-D -- yet most laboratory studies of cancer have been done in 2-D, with a single layer of cancer cells grown on the bottom of a petri dish. Too often a promising 2-D drug candidate fails when it enters the 3-D stage of animal testing. The new 3-D tumor spheroids may help eliminate that problem. They also offer a realistic tumor oxygen environment that cues the blood vessel growth that nourishes tumors -- an appealing target for anti-cancer drug design.

"Basically, any laboratory that works with cells could adopt our new spherical microcavity system to do their own 3-D experiments or drug screening on hundreds or even thousands of little tumor spheroids," said King.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sivaprakash Agastin, Ut-Binh T. Giang, Yue Geng, Lisa A. DeLouise, Michael R. King. Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics, 2011; 5 (2): 024110 DOI: 10.1063/1.3596530

Cite This Page:

American Institute of Physics. "New 3-D tumor model: Step toward speeding cancer drug research." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110608141535.htm>.
American Institute of Physics. (2011, June 13). New 3-D tumor model: Step toward speeding cancer drug research. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/06/110608141535.htm
American Institute of Physics. "New 3-D tumor model: Step toward speeding cancer drug research." ScienceDaily. www.sciencedaily.com/releases/2011/06/110608141535.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins