Featured Research

from universities, journals, and other organizations

Neutrons, simulations reveal details of molecule that complicates next-generation biofuels

Date:
June 16, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
A first-of-its-kind combination of experiment and simulation at the U.S. Department of Energy's Oak Ridge National Laboratory is providing a close-up look at the molecule that complicates next-generation biofuels. Lignin, a major component of plant cell walls, aggregates to form clumps, which cause problems during the production of cellulosic ethanol. The exact shape and structure of the aggregates, however, have remained largely unknown. Researchers have revealed the surface structure of lignin aggregates down to 1 angstrom -- the equivalent of a 10 billionth of a meter or smaller than the width of a carbon atom.

New molecular models of lignin aggregates are helping scientists understand a limiting factor in the production of ethanol.
Credit: Image courtesy of SciStyle -- http://www.scistyle.com

A first-of-its-kind combination of experiment and simulation at the Department of Energy's Oak Ridge National Laboratory is providing a close-up look at the molecule that complicates next-generation biofuels.

Lignin, a major component of plant cell walls, aggregates to form clumps, which cause problems during the production of cellulosic ethanol. The exact shape and structure of the aggregates, however, have remained largely unknown.

A team led by ORNL's Jeremy Smith revealed the surface structure of lignin aggregates down to 1 angstrom -- the equivalent of a 10 billionth of a meter or smaller than the width of a carbon atom. The team's findings were published in Physical Review E.

"We've combined neutron scattering experiments with large-scale simulations on ORNL's main supercomputer to reveal that pretreated softwood lignin aggregates are characterized by a highly folded surface," said Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at University of Tennessee.

Lignin clumps can inhibit the conversion of biofuel feedstocks -- for example, switchgrass -- into ethanol, a renewable substitute for gasoline. When enzymes are used to release plant sugars necessary for ethanol production, the lignin aggregates bind to the enzymes and reduce the efficiency of the conversion.

Lignin's highly folded surface creates more opportunities to capture the passing enzymes than a smooth surface would. An improved understanding of the lignin aggregates will aid scientists in efforts to design a more effective pretreatment process, which in turn could lower the cost of biofuels.

"Nature has evolved a very sophisticated mechanism to protect plants against enzymatic attack," said ORNL team member Loukas Petridis. "We're trying to understand the physical basis of biomass recalcitrance -- resistance of the plants to enzymatic degradation."

The complementary techniques of simulation on ORNL's Jaguar supercomputer and neutron scattering at the lab's High Flux Isotope Reactor enabled Smith's team to resolve lignin's structure at scales ranging from 1 to 1,000 angstroms. Smith's project is the first to combine the two methods in biofuel research. "This work illustrates how state-of-the-art neutron scattering and high-performance supercomputing can be integrated to reveal structures of importance to the energy biosciences," Smith said.

The research was supported by DOE's Office of Science and used the resources of the Leadership Computing Facility at ORNL under a DOE INCITE award. Team members include ORNL's Sai Venkatesh Pingali, Volker Urban, William Heller, Hugh O'Neill and Marcus Foston and Arthur Ragauskas from Georgia Institute of Technology.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Loukas Petridis, Sai Pingali, Volker Urban, William Heller, Hugh O’Neil, Marcus Foston, Arthur Ragauskas, Jeremy Smith. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Physical Review E, 2011; 83 (6) DOI: 10.1103/PhysRevE.83.061911

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutrons, simulations reveal details of molecule that complicates next-generation biofuels." ScienceDaily. ScienceDaily, 16 June 2011. <www.sciencedaily.com/releases/2011/06/110615161806.htm>.
DOE/Oak Ridge National Laboratory. (2011, June 16). Neutrons, simulations reveal details of molecule that complicates next-generation biofuels. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/06/110615161806.htm
DOE/Oak Ridge National Laboratory. "Neutrons, simulations reveal details of molecule that complicates next-generation biofuels." ScienceDaily. www.sciencedaily.com/releases/2011/06/110615161806.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins