Featured Research

from universities, journals, and other organizations

Gatekeepers: How microbes make it past tight spaces between cells

Date:
June 17, 2011
Source:
University of Pennsylvania School of Medicine
Summary:
There are ten microbial cells for every one human cell in the body, and microbiology dogma holds that there is a tight barrier protecting the inside of the body from outside invaders, in this case bacteria. Bacterial pathogens can break this barrier to cause infection and researchers wondered how microbes get inside the host and circulate in the first place. They tested to see if microbes somehow weaken host cell defenses to enter tissues.

There are ten microbial cells for every one human cell in the body, and microbiology dogma holds that there is a tight barrier protecting the inside of the body from outside invaders, in this case bacteria. Bacterial pathogens can break this barrier to cause infection and senior author Jeffrey Weiser, MD, professor of Microbiology and Pediatrics from the Perelman School of Medicine at the University of Pennsylvania, and first author Thomas Clarke, PhD, a postdoctoral fellow in the Weiser lab, wondered how microbes get inside the host and circulate in the first place. Weiser and Clarke tested to see if microbes somehow weaken host cell defenses to enter tissues.

In this Cell Host & Microbe study, the investigators found that microbes open and get through the initial cellular barrier -- epithelial cells that line the airway -- in a programmed and efficient way. They surmise this could be a normal physiological event and the epithelial lining may not be as effective at keeping microbes out as once thought. Microbes that survive once past the epithelial lining tend to be pathogenic, such as Streptococcus pneumoniae and Haemophilus influenzae, two major human pathogens causing invasive infections. Their data support a general mechanism for epithelial opening exploited by invasive pathogens to facilitate movement into tissue to initiate disease.

Using microarray and PCR analysis of the epithelial cells' response to invasion by S. pneumoniae and H. influenzae, the researchers found a downregulation of genes called claudins that encode proteins key to keeping the spaces between epithelial cells tight. All animals recognize molecules in microbial cell walls. It was detection of these microbial molecules by host molecules called Toll-like receptors that caused the proteins responsible for keeping the cellular barrier tight to fall down on the job.

When modeled in a cell assay, claudin downregulation was preceded by upregulation of another protein called SNAIL1 that suppresses claudins, the cellular components that keep the junctions tight. What's more, inhibiting claudin expression in a cell assay or stimulating the Toll-like receptors in an animal model loosened the junctions between cells and promoted bacterial movement across the epithelium.

"This study provides an understanding of how microbes gain access into their host to affect its physiology," concludes Weiser.

This research was funded by the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Gatekeepers: How microbes make it past tight spaces between cells." ScienceDaily. ScienceDaily, 17 June 2011. <www.sciencedaily.com/releases/2011/06/110616193905.htm>.
University of Pennsylvania School of Medicine. (2011, June 17). Gatekeepers: How microbes make it past tight spaces between cells. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2011/06/110616193905.htm
University of Pennsylvania School of Medicine. "Gatekeepers: How microbes make it past tight spaces between cells." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616193905.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins