Featured Research

from universities, journals, and other organizations

Weaker brain 'sync' may be early sign of autism

Date:
June 22, 2011
Source:
University of California - San Diego
Summary:
In a novel imaging study of sleeping toddlers, scientists report that a diminished ability of a young brain's hemispheres to "sync" with one another could be a powerful, new biological marker of autism, one that might enable an autism diagnosis at a very young age.

In a novel imaging study of sleeping toddlers, scientists at the University of California, San Diego Autism Center of Excellence report that a diminished ability of a young brain's hemispheres to "sync" with one another could be a powerful, new biological marker of autism, one that might enable an autism diagnosis at a very young age.

Writing in the June 23 issue of the journal Neuron, Eric Courchesne, PhD, professor of neurosciences at the UC San Diego School of Medicine, and colleagues in Israel and Pittsburgh report that language areas located in the right and left sides of the brain are less synchronized in toddlers with autism than in toddlers displaying either language delay problems or typical development. The strength of synchronization was associated with individual language and communication abilities: the weaker the synchronization, the more severe the communication difficulties exhibited by the autistic child.

"Neural synchronization refers to the coordinated timing of neural activity across distinct brain areas," said Ilan Dinstein, PhD, a neurobiologist at the Weizmann Institute of Science in Rehovot, Israel, a member of the UCSD Autism Center of Excellence, and first author of the study.

"In a normal brain, neurons in separate areas belonging to a system with a particular function, such as vision or language, always stay in sync, even during sleep. Our study shows that in most brains of toddlers with autism this 'sync' is significantly weaker in brain areas that are responsible for language and communication abilities. Many things need to be set up right during brain development to enable normal sync between different brain areas. The wiring between the brain areas needs to be right and the neurons within each brain area need to send and receive their messages properly."

The findings, if corroborated by further research, could have significant impact, Dinstein said.

"It would be a biological rather than a behavioral measure that could be used to diagnose autism at a very young age -- around one year. The functional magnetic resonance image (fMRI) scan would not identify all of the individuals with autism, but it would be helpful in revealing the majority of individuals. The results also tell us that significant differences in the biology of language areas are apparent during very early stages of autism development. It will help focus further research into the brain differences that underlie autism."

Though the exact cause of autism remains unknown, it is hypothesized that the neurological disorder -- which is marked by impaired social and communications skills, usually manifesting itself in the first few years of life -- arises from the development of abnormal neural networks with irregular connectivity and synchronization.

Autism is a developmental disorder that progresses with time. It is currently impossible to identify autism at birth and diagnoses, which are entirely based upon observed behavioral symptoms, are typically performed only after the age of 3. These facts help make the study of how autism develops particularly challenging. Affected toddlers are prone to incessant movement and random, uncontrolled behaviors, both of which can disrupt efforts to measure brain function and structure using different imaging techniques.

To sidestep these difficulties, the UCSD scientists studied toddlers' brains at night while they were sleeping. This novel approach meant toddlers with severe autism, who are often left out of studies due to their challenging behaviors, could be included, thus permitting scientists to successfully test the strength of brain synchronization in children with different levels of development and identify the brain areas that exhibited weak synchronization in those with autism.

"We hope that this work will be one of several enlightening steps leading to a fuller understanding of the underlying biology of autism during early development," said Dinstein. "Such an understanding is critical for developing the necessary diagnostic and therapeutical tools that are so needed for successful early intervention."

Co-authors of the paper include Karen Pierce and Eric Courchesne, Autism Center of Excellence and the Department of Neurosciences, both at UCSD; Lisa Eyler, Autism Center of Excellence and Department of Psychiatry, UCSD; Stephanie Solso, Autism Center of Excellence, UCSD; Rafael Malach, Department of Neurobiology, Weizmann Institute of Science; Marlene Behrmann, Department of Psychology, Carnegie Mellon University, Pittsburgh.

Funding for this study came, in part, from grants from the National Institute of Mental Health, the National Institutes of Health, the Israel Science Foundation and the Pennsylvania Department of Health.

About autism

Autism is a neurological disorder typically appearing in the first few years of life. It affects the brain's normal development of social and communication skills. Symptoms include impaired or lost language and social skills, heightened physical sensitivities and compulsive or repetitive behaviors.

The condition is linked to abnormal biology and chemistry in the brain, but the exact causes for these abnormalities is not known, though it is likely a combination of genetic and environmental factors. The term autism broadly covers a range of complex neurodevelopment disorders known as autism spectrum disorder or ASD. The total number of children with ASD is not known, but experts estimate three to six children in every 1,000 have an ASD condition. Boys are four times more likely to have ASD than girls.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ilan Dinstein, Karen Pierce, Lisa Eyler, Stephanie Solso, Rafael Malach, Marlene Behrmann, Eric Courchesne. Disrupted Neural Synchronization in Toddlers with Autism. Neuron, Volume 70, Issue 6, 1218-1225, 23 June 2011 DOI: 10.1016/j.neuron.2011.04.018

Cite This Page:

University of California - San Diego. "Weaker brain 'sync' may be early sign of autism." ScienceDaily. ScienceDaily, 22 June 2011. <www.sciencedaily.com/releases/2011/06/110622125651.htm>.
University of California - San Diego. (2011, June 22). Weaker brain 'sync' may be early sign of autism. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/06/110622125651.htm
University of California - San Diego. "Weaker brain 'sync' may be early sign of autism." ScienceDaily. www.sciencedaily.com/releases/2011/06/110622125651.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins