Featured Research

from universities, journals, and other organizations

'Atom-scale’ switches for revolutionary low-power computer processor developed

Date:
June 27, 2011
Source:
University of Southampton
Summary:
Revolutionary low-power logic systems that will perform instant on/off logic operations are being developed by research scientists.

Revolutionary low-power logic systems that will perform instant on/off logic operations are being developed by research scientists at the University of Southampton in partnership with the National Institute for Materials Science (NIMS), Japan, and Hitachi Cambridge Laboratory.

Related Articles


The three-year UK-Japan project, which is co-led by Professor Hiroshi Mizuta of ECS-Electronics and Computer Science at Southampton, and Dr Tsuyoshi Hasegawa, Atomic Electronics Group, NIMS, aims to build the world's first non-volatile logic systems based on three-terminal atom transistors hybridized with nano-electro-mechanical (NEMS) switches.

The new device will initially become available as an integrated logic-memory chip so that it can be used in portable devices. As a result of this memory retention capacity, devices such as computers and mobile phones will become smaller and lighter.

According to Dr Harold Chong of Southampton's Nano Research Group, the new device is being developed to address the fact that modern computer chips are using an increasing amount of power. "In fact, research has shown that the temperature of chips can be as hot as the surface of the sun," he said.

To reduce power usage, the researchers are aiming to increase the non-volatile part of the memory which is contained on the computer chip. The logic behind this is that if the non-volatile memory is expanded, then it will not be necessary to apply large amounts of power to the chip in order for it to retain information in its memory.

"There will be huge benefits from the cooperation between the Southampton and NIMS teams," said Professor Mizuta. "We will be cooperating closely in overcoming current technological bottlenecks and accelerating the development of novel non-volatile logic devices. which have not been yet achieved with other approaches."

The project aims to realise the world's first low-power and non-volatile logic system based on three-terminal metal oxide atom transistors hybridised with nano-electro-mechanical devices. A key feature of this system will be an "on/off" switch operated by a suspended nanobeam which moves up and down when activated by voltage and results in an instant powering of the computer with no time lag.

"The 'instant' nature of this switch means that it only needs a few pico watts per transistor resulting in very low power requirements," said Dr Chong. "There is potentially very low leakage in this device resulting in portable computing equipments that will be lighter and more powerful. This technology will also relieve the bottleneck in information processing, which at the moment is clogged up on its own memory."

The research is funded by the Engineering and Physical Research Council's strategic UK-Japan cooperative program with Japan Science and Technology Agency (JST).


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "'Atom-scale’ switches for revolutionary low-power computer processor developed." ScienceDaily. ScienceDaily, 27 June 2011. <www.sciencedaily.com/releases/2011/06/110627095412.htm>.
University of Southampton. (2011, June 27). 'Atom-scale’ switches for revolutionary low-power computer processor developed. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/06/110627095412.htm
University of Southampton. "'Atom-scale’ switches for revolutionary low-power computer processor developed." ScienceDaily. www.sciencedaily.com/releases/2011/06/110627095412.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
BlackBerry Launches Classic Smartphone

BlackBerry Launches Classic Smartphone

AP (Dec. 17, 2014) BlackBerry is returning to its roots with a new smartphone called the Classic, featuring a traditional keyboard at a time when rival Apple and Android phones - and most smartphone customers - have embraced touch screens. (Dec. 17) Video provided by AP
Powered by NewsLook.com
The Future of Work, Skills & Careers in a Digital World-Dr. Tracy Wilen

The Future of Work, Skills & Careers in a Digital World-Dr. Tracy Wilen

Working Mother (Dec. 16, 2014) 2014 Worklife Congress Video provided by Working Mother
Powered by NewsLook.com
Tech Companies Make Holiday Shopping Easier Than Ever

Tech Companies Make Holiday Shopping Easier Than Ever

Newsy (Dec. 16, 2014) Innovative new services allow consumers to shop with their smartphones, split bills and even haggle. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins