Featured Research

from universities, journals, and other organizations

New laser technology could kill viruses and improve DVDs

Date:
July 5, 2011
Source:
University of California - Riverside
Summary:
Engineers have made a discovery in semiconductor nanowire laser technology that could potentially do everything from kill viruses to increase storage capacity of DVDs.

From left, Guoping Wang, a graduate student, Jianlin Liu, a professor of electrical engineering, and Sheng Chu, a graduate student.
Credit: Image courtesy of University of California - Riverside

A team led by a professor at the University of California, Riverside Bourns College of Engineering has made a discovery in semiconductor nanowire laser technology that could potentially do everything from kill viruses to increase storage capacity of DVDs.

Related Articles


Ultraviolet semiconductor diode lasers are widely used in data processing, information storage and biology. Their applications have been limited, however, by size, cost and power. The current generation of ultraviolet lasers is based on a material called gallium nitride, but Jianlin Liu, a professor of electrical engineering, and his colleagues have made a breakthrough in zinc oxide nanowire waveguide lasers, which can offer smaller sizes, lower costs, higher powers and shorter wavelengths.

Until now, zinc oxide nanowires couldn't be used in real world light emission applications because of the lack of p-type, or positive type, material needed by all semiconductors. Liu solved that problem by doping the zinc oxide nanowires with antimony, a metalloid element, to create the p-type material.

The p-type zinc oxide nanowires were connected with n-type, or negative type, zinc oxide material to form a device called p-n junction diode. Powered by a battery, highly directional laser light emits only from the ends of the nanowires.

"People in the zinc oxide research community throughout the world have been trying hard to achieve this for the past decade," Liu said. "This discovery is likely to stimulate the whole field to push the technology further."

Liu's findings have been published in the July issue of Nature Nanotechnology. Co-authors are: Sheng Chu, Guoping Wang, Jieying Kong, Lin Li and Jingjian Ren, all graduate students at UC Riverside; Weihang Zhou, a student at Fudan University in China; Leonid Chernyak, a professor of physics at the University of Central Florida; Yuqing Lin, a graduate student at the University of Central Florida; and Jianze Zhao, a visiting student from Dalian University of Technology in China.

The discovery could have a wide-range of impacts.

For information storage, the zinc oxide nanowire lasers could be used to read and process much denser data on storage media such as DVDs because the ultraviolet has shorter wavelength than other lights, such as red. For example, a DVD that would store two hours of music could store four or six hours using the new type of laser.

For biology and medical therapeutics, the ultra-small laser light beam from a nanowire laser can penetrate a living cell, or excite or change its function from a bad cell to a good cell. The light could also be used to purify drinking water.

For photonics, the ultraviolet light could provide superfast data processing and transmission. Reliable small ultraviolet semiconductor diode lasers may help develop ultraviolet wireless communication technology, which is potentially better than state-of-the-art infrared communication technologies used in various electronic information systems.

While Liu and the students in his laboratory have demonstrated the p-type doping of zinc oxide and electrically powered nanowire waveguide lasing in the ultraviolet range, he said more work still needs to be done with the stability and reliability of the p-type material.

The work on the ZnO device was in part supported by Army Research Office Young Investigator Program and the National Science Foundation. The work on p-type ZnO was supported by the Department of Energy.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sheng Chu, Guoping Wang, Weihang Zhou, Yuqing Lin, Leonid Chernyak, Jianze Zhao, Jieying Kong, Lin Li, Jingjian Ren, Jianlin Liu. Electrically pumped waveguide lasing from ZnO nanowires. Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2011.97

Cite This Page:

University of California - Riverside. "New laser technology could kill viruses and improve DVDs." ScienceDaily. ScienceDaily, 5 July 2011. <www.sciencedaily.com/releases/2011/07/110705150932.htm>.
University of California - Riverside. (2011, July 5). New laser technology could kill viruses and improve DVDs. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2011/07/110705150932.htm
University of California - Riverside. "New laser technology could kill viruses and improve DVDs." ScienceDaily. www.sciencedaily.com/releases/2011/07/110705150932.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Human or Robot You Decide

Human or Robot You Decide

Reuters - Business Video Online (Apr. 23, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins