Featured Research

from universities, journals, and other organizations

The origin of comet material formed at high temperatures

Date:
August 2, 2011
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Comets are icy bodies, yet they are made of materials formed at very high temperatures. Where do these materials come from? Researchers have now provided the physical explanation behind this phenomenon. They have demonstrated how these materials migrated from the hottest parts of the solar system to its outer regions before entering the composition of comets.

Effect of photophoresis on a particle in the primordial nebula: the particle moves in the direction opposite to the Sun due to the variation in pressure of the gas, which is heated on the “day” side and cooled on the “night” side.
Credit: © O. Mousis

Comets are icy bodies, yet they are made of materials formed at very high temperatures. Where do these materials come from? Researchers from the Institut UTINAM(1)(CNRS/Université de Besançon) have now provided the physical explanation behind this phenomenon. They have demonstrated how these materials migrated from the hottest parts of the solar system to its outer regions before entering the composition of comets.

Their results are published in the July 2011 issue of the journal Astronomy & Astrophysics.

On 15 January 2006, after an eight-year voyage, NASA's Stardust Mission (Discovery program) brought dust from Comet Wild 2 back to Earth. Comets are formed at very low temperatures (around 50 Kelvin, i.e. -223°C). However, analyses have revealed that Comet Wild 2 is made of crystalline silicates and CAIs (Calcium-Aluminium-rich Inclusions). Considering that the synthesis of these minerals requires very high temperatures (above 1 000 Kelvin or 727°C), how can this composition be explained?

A team from the Institut UTINAM1 (CNRS/Université de Besançon), in collaboration with researchers from the Institut de Physique de Rennes (CNRS/Université de Rennes), the University of Duisburg-Essen (Germany) and the Laboratoire Astrophysique, Instrumentation et Modélisation (CNRS/CEA/Université Paris Diderot), have provided the answer on the basis of a physical phenomenon called photophoresis. This force depends on two parameters: the intensity of solar radiation and gas pressur e. At the birth of the solar system, the comets were formed from the protoplanetary disk(2). Inside this disk, a mixture of solid grains ranging in size from a few microns to several centimeters was bathed in a dilute gas that let sunlight through.

According to the researchers, photophoresis drove the particles towards the outer regions of the disk. Under the effect of solar radiation, one face of the grains was "hotter" than the other and the behavior of gas molecules on the surface of these grains was modified: on the "sunny" side, the gas molecules were more unstable and moved about more rapidly than on the "cold" side. By causing a pressure difference, this imbalance moved the grains away from the Sun. Through digital simulations, the researchers have borne out this photophoresis phenomenon. They demonstrated that the grains of crystalline silicates formed in the inner, hot region of the protoplanetary disk near to the Sun migrated to its outer, cold region before playing a part in the formation of the comets! . This novel physical explanation could account for the position of certain dust rings observed in protoplanetary disks and thus shed light on the conditions of planet formation.

(1)Institut "Univers, Transport, Interfaces Nanostructures, Atmosphère et Environnement, Molécules" (CNRS/Université de Besançon). (2)The protoplanetary disk of a young star (for example the Sun) is the disk of gas and dust that surrounds it, and in which planets are likely to form.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Moudens, O. Mousis, J.-M. Petit, G. Wurm, D. Cordier, S. Charnoz. Photophoretic transport of hot minerals in the solar nebula. Astronomy & Astrophysics, 2011; 531: A106 DOI: 10.1051/0004-6361/201116476

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "The origin of comet material formed at high temperatures." ScienceDaily. ScienceDaily, 2 August 2011. <www.sciencedaily.com/releases/2011/07/110722130253.htm>.
CNRS (Délégation Paris Michel-Ange). (2011, August 2). The origin of comet material formed at high temperatures. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/07/110722130253.htm
CNRS (Délégation Paris Michel-Ange). "The origin of comet material formed at high temperatures." ScienceDaily. www.sciencedaily.com/releases/2011/07/110722130253.htm (accessed October 21, 2014).

Share This



More Space & Time News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) — The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins