Featured Research

from universities, journals, and other organizations

Specialized regulatory T cell stifles antibody production centers: Discovery has potential implications for cancer, autoimmune disease

Date:
July 25, 2011
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, scientists have reported.

A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, a team led by scientists at The University of Texas MD Anderson Cancer Center reported online in the journal Nature Medicine.

Related Articles


"Regulatory T cells prevent unwanted or exaggerated immune system responses, but the mechanism by which they accomplish this has been unclear," said paper senior author Chen Dong, Ph.D., professor in MD Anderson's Department of Immunology and director of the Center for Inflammation and Cancer.

"We've identified a molecular pathway that creates a specialized regulatory T cell, which suppresses the reaction of structures called germinal centers. This is where immune system T cells and B cells interact to swiftly produce large quantities of antibodies," Dong said.

The discovery of the germinal center off-switch, which comes two years after Dong and colleagues identified the mechanisms underlying a helper T cell that activates the centers, has potential implications for cancer and autoimmune diseases.

"In some types of cancer, the presence of many regulatory T cells is associated with poor prognosis," Dong said. "The theory is those cells suppress an immune system response in the tumor's microenvironment that otherwise might have attacked the cancer."

However, in B cell lymphomas, overproliferation and mutation of B cells are the problems, Dong said. Hitting the regulatory T cell off-switch might help against lymphomas and autoimmune diseases, while blocking it could permit an immune response against other cancers.

Antibody production central

Germinal centers are found in the lymph nodes and the spleen. They serve as gathering points for B and T cell lymphocytes, infection-fighting white blood cells.

When the adaptive immune system detects an invading bacterium or virus, B cells present a piece of the invader, an antigen, to T cells. The antigen converts a naοve T cell to a helper T cell that secretes cytokines, which help the B cells expand and differentiate into specialized antibodies to destroy the intruder.

"Germinal centers have mostly B cells with a few helper T cells to regulate them. The B cells mutate to make high-affinity antibodies and memory B cells for long-term immunity. The cell population in the germinal center structures replicates in an average of several hours, one of the fastest rates of cell replication known in mammals," Dong said.

Tracking down specialized T cell

In the Nature Medicine paper, Dong and colleagues found that a subgroup of regulatory T cells that expresses two genes, Bcl-6 and CXCR5, moves into germinal centers in both mice and humans, where they have access to B cells.

(Bcl-6 produces a protein called a transcription factor, which moves into the cell nucleus to regulate other genes. CXCR5 is a receptor protein for a signaling molecule called CXCL13.)

They also found that the Bcl-6/CXCR5 T cells aren't produced in the thymus, with other T cells, but are generated by regulatory T cell precursor cells that express Foxp3, another transcription factor.

Knocking out the regulatory T cells that express all three proteins in mice resulted in increased germinal center production of antibodies. They named this key T cell the T follicular regulatory cell, or Tfr.

In a 2009 paper in the journal Science, the researchers found that naοve T cells that expressed Bcl-6 and CXCR5 also gathered in the B cell zone of germinal centers. Expression of Bcl6 converted the T cell into a T follicular helper (Tfh) cell that launches antibody production in the germinal centers.

With Tfr turning germinal centers off and Tfh turning them on, we could potentially regulate antibody production, Dong noted. Increasing Tfr production could be a new approach to treating autoimmune inflammatory disorders, such as lupus and rheumatoid arthritis.

The team's research was funded by grants from the National Institutes of Health, the Leukemia and Lymphoma Society, MD Anderson, the American Heart Association, Doris Duke Charitable Foundation Clinical Scientist Development Award and the China Ministry of Science and Technology Protein Science Key Research Project.

Co-authors with Dong are first author Yeonseok Chung, Ph.D., Shinya Tanaka, Ph.D., Roza Nurieva, Ph.D., Gustavo Martinez, Yi-Hong Wang and Joseph Reynolds, Ph.D., of MD Anderson's Department of Immunology and the Center for Cancer Immunology; Chung also is with The University of Texas Health Science Center at Houston Institute of Molecular Medicine; Seema Rawal and Sattva Neelapu, M.D., of MD Anderson's Department of Lymphoma and Myeloma, also of the Center for Cancer Immunology; and Ziao-hui Zhou, M.D., Hui-min Fan, M.D., and Zhong-ming Liu, M.D., of Shanghai Dong Fang Hospital, Shanghai, China.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Specialized regulatory T cell stifles antibody production centers: Discovery has potential implications for cancer, autoimmune disease." ScienceDaily. ScienceDaily, 25 July 2011. <www.sciencedaily.com/releases/2011/07/110725132654.htm>.
University of Texas M. D. Anderson Cancer Center. (2011, July 25). Specialized regulatory T cell stifles antibody production centers: Discovery has potential implications for cancer, autoimmune disease. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/07/110725132654.htm
University of Texas M. D. Anderson Cancer Center. "Specialized regulatory T cell stifles antibody production centers: Discovery has potential implications for cancer, autoimmune disease." ScienceDaily. www.sciencedaily.com/releases/2011/07/110725132654.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) — Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins