Featured Research

from universities, journals, and other organizations

Cold electrons to aid better design of drugs and materials

Date:
August 1, 2011
Source:
University of Melbourne
Summary:
A new source of very cold electrons will improve the quality and speed of nanoimaging for drug and materials development, to a trillionth of a second.

A new source of very cold electrons will improve the quality and speed of nanoimaging for drug and materials development, to a trillionth of a second.

Related Articles


The study published in Nature Physics August 1 was carried out by researchers from the ARC Centre of Excellence for Coherent X-ray Science (CXS), headquartered at the University of Melbourne.

Associate Professor Robert Scholten from the University's School of Physics and the CXS, said the new cold electron source offered potential advances in electron imaging at the atomic or nanoscale which will have real applications in a range of industries including health.

"Enhanced nanoimaging using this cold source will enable us to design better drugs for more targeted treatments. Having a better visibility of the structure of a cell membrane protein and how it functions will assist in more targeted drug design.

"It will also help us understand how vulnerabilities such as cracks form, when designing new materials for advanced technology such as in turbine blades for jet engines.

"Nano imaging using electron microscopy give us intricate images of the micro and nanoscale world, but conventional hot electron sources are incoherent -- like the indirect light of light bulbs versus direct laser beams.

"Depending on the target, it can take several minutes to several hours to undergo this process and the image is not very clear.'

"Our experiments have revealed that with cold electrons and our new technology, we will be able to take a snapshot of the whole sample with atomic resolution and to reduce the imaging time to a trillionth of a second," he said.

The team led by Associate Professor Scholten used lasers to cool atoms to a few millionths of a degree above absolute zero and then to extract a beam of extremely cold electrons.

Using new technology, they were able to create beams in complex shapes, and because the electrons are so very cold (about 10 degrees above absolute zero) the beam retains that shape, rather than exploding as it would for a conventional hot electron source.

"This new cold source will allow us to see dynamic processes within the sample, to understand how it functions on a more precise level," he said.

"Cold electron technology opens up a whole new world of imaging -- this study is the first to show its real potential," he said.

It is hoped the technology will be further developed in the next few years.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, R. E. Scholten. Arbitrarily shaped high-coherence electron bunches from cold atoms. Nature Physics, 2011; DOI: 10.1038/nphys2052

Cite This Page:

University of Melbourne. "Cold electrons to aid better design of drugs and materials." ScienceDaily. ScienceDaily, 1 August 2011. <www.sciencedaily.com/releases/2011/08/110801095109.htm>.
University of Melbourne. (2011, August 1). Cold electrons to aid better design of drugs and materials. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/08/110801095109.htm
University of Melbourne. "Cold electrons to aid better design of drugs and materials." ScienceDaily. www.sciencedaily.com/releases/2011/08/110801095109.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins