Featured Research

from universities, journals, and other organizations

A simple slice of energy storage

Date:
August 3, 2011
Source:
Rice University
Summary:
Turning graphite oxide (GO) into full-fledged supercapacitors turns out to be simple. But until a laboratory figured out how, it was anything but obvious.

Burning patterns into graphite oxide with a laser turns the thin sheets into fully functional supercapacitors, according to a new paper in Nature Nanotechnology.
Credit: Ajayan Lab/Rice University

Turning graphite oxide (GO) into full-fledged supercapacitors turns out to be simple. But until a laboratory at Rice University figured out how, it was anything but obvious.

Related Articles


Rice Professor Pulickel Ajayan and his team discovered they could transform a sheet of GO into a functional supercapacitor by writing patterns into it with a laser. Scientists already knew that the heat of a laser could convert GO -- the oxidized form of graphite, or carbon-based pencil lead -- into electrically conducting reduced graphite oxide (RGO). By writing patterns of RGO into thin sheets of GO, the Rice researchers effectively turned them into free-standing supercapacitors with the ability to store and release energy over thousands of cycles.

The discovery was reported this week in the online edition of Nature Nanotechnology.

The surprising find was that GO, when hydrated, can hold ions and serve as a solid electrolyte and an electrically insulating separator. "This is quite easy, as GO soaks up water like a sponge and can hold up to 16 percent of its weight," said Wei Gao, lead author of the paper and a graduate student in the Ajayan Lab.

"The fundamental breakthrough here is that GO, when it contains water, acts as an ionic conductor," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. "So we're able to convert a sheet of GO into a supercapacitor without adding anything. All you need are a pattern and the electrodes, and you have a device. Of course the devices also perform in the presence of external electrolytes, which is even better.

"I think you're going to see a lot of tiny devices that need smaller power sources. Intermediate-sized devices might also be powered by this material; it's very scalable."

As a control experiment, the team sucked all the water out of an RGO-GO-RGO device in a vacuum to kill its ionic conductivity. Exposing it to air for three hours completely restored its supercapacitor function, another potentially handy characteristic.

To build a fully functional supercapacitor, conducting electrode materials need to be separated by an insulator that contains the electrolyte. When laser-written patterns of conducting RGO are separated by GO, the material becomes an energy storage device, Gao said. The patterns can be layered top and bottom or on the same plane.

In their experiments, heat from a laser at Rice's Oshman Engineering Design Kitchen sucked oxygen out of the surface to create the dark, porous RGO, which provided a level of resistance and restrained the GO-contained ions until their controlled release. Patterns were written in the GO with nearly one-micron accuracy.

Essentially, the devices exhibited good electrochemical performance -- without the chemicals.

Testing of the devices at Rice and by colleagues at the University of Delaware showed their performance compares favorably with existing thin-film micro-supercapacitors. They exhibit proton transport characteristics similar to that of Nafion, a commercial electrolyte membrane discovered in the 1960s, Ajayan said.

While the lab won't make flat supercapacitors in bulk anytime soon, Ajayan said the research opens the way to interesting possibilities, including devices for use in fuel cells and lithium batteries.

He said the discovery is surprising "because a lot of people have been looking at graphite oxide for five or 10 years now, and nobody has seen what we see here. We've discovered a fundamental mechanism of graphite oxide -- an ionic conducting membrane -- that is useful for applications."

Co-authors of the paper are graduate student Neelam Singh, former postdoctoral researcher Li Song and Lijie Ci, postdoctoral researcher Zheng Liu, research scientist Arava Leela Mohana Reddy and Robert Vajtai, a faculty fellow in mechanical engineering and materials science, all of Rice; and graduate student Qing Zhang and Binngqing Wei, an associate professor of mechanical engineering, both at the University of Delaware.

Nanoholdings LLC funded the research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Gao, Neelam Singh, Li Song, Zheng Liu, Arava Leela Mohana Reddy, Lijie Ci, Robert Vajtai, Qing Zhang, Bingqing Wei, Pulickel M. Ajayan. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2011.110

Cite This Page:

Rice University. "A simple slice of energy storage." ScienceDaily. ScienceDaily, 3 August 2011. <www.sciencedaily.com/releases/2011/08/110801142602.htm>.
Rice University. (2011, August 3). A simple slice of energy storage. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2011/08/110801142602.htm
Rice University. "A simple slice of energy storage." ScienceDaily. www.sciencedaily.com/releases/2011/08/110801142602.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins