Featured Research

from universities, journals, and other organizations

Technique to stimulate heart cells may lead to light-controlled pacemakers

Date:
August 9, 2011
Source:
American Heart Association
Summary:
Researchers used light to control the electrical activity of heart muscle cells. The research raises the possibility of light-controlled pacemakers to treat heart rhythm problems.

Stony Brook’s Dr. Emilia Entcheva in her laboratory with Zhiheng Jia, a biomedical engineering Ph.D. student and lead author of the study.
Credit: Image courtesy of American Heart Association

A new technique that stimulates heart muscle cells with low-energy light raises the possibility of a future light-controlled pacemaker, researchers reported in Circulation: Arrhythmia & Electrophysiology, a journal of the American Heart Association.

"Electronic cardiac pacemakers and defibrillators are well established and successful technologies, but they are not without problems, including the breakage of metal leads, limited battery life and interference from strong magnetic fields," said Emilia Entcheva, Ph.D., senior author of the study and associate professor of biomedical engineering at Stony Brook University in Stony Brook, New York. "Eventually, optical stimulation may overcome some of these problems and offer a new way of controlling heart function."

The research is part of a new field called optogenetics that introduces light-sensitive proteins into "excitable" cells, making it possible to control specific activities within cells. Excitable cells can actively generate electrical signals such as nerve cells and muscle cells.

The main appeal of control by light is the unprecedented ability to remotely, without contact, turn on/off a single cell or a cell type, not possible by electrical or other means of stimulation.

Several years ago, investigators discovered that brain cells could be stimulated using light if they were genetically altered to produce a light-sensitive protein called channelrhodopsin 2 (ChR2).

In the new study, researchers created cells expressing the ChR2 protein and coupled them with heart muscle cells from animals, creating heart tissue stimulated by light. They found light-triggered heart muscle contractions and electrical waves were indistinguishable from electrically-triggered waves.

Rather than directly modifying heart cells, the researchers coupled donor cells optimized for light responsiveness with the heart cells. The new technique uses much lower energy than in prior studies and doesn't require the use of viruses or the introduction of genes from other organisms into heart cells. Instead, cells from a person's bone marrow or skin can be cultured and modified to respond to light, reducing the possibility that the immune system will reject the light-sensitive cells.

"Our method of non-viral cell delivery may overcome some hurdles toward potential clinical use by harvesting cells from the patient, making them light-responsive and using them as donor cells in the same patient," Entcheva said.

The approach may someday improve pacemakers and defibrillators. Instead of metal leads, a light-controlled pacemaker would use biocompatible, flexible plastic optic fibers.

In preliminary calculations, a light-based system might require only one-tenth the energy, meaning that a battery could last 50 years rather than five. The more immediate application of the technique will likely be to aid heart research.

"Optical stimulation is a great tool to selectively probe and control different parts of the electrical circuitry of the heart to better understand where the vulnerable sites are or what gives rise to lethal arrhythmias," Entcheva said.

The technique might also be used to test new drugs for possible cardiac side effects.

Co-authors are: Zhiheng Jia, M.S.; Virginijus Valiunas, Ph.D.; Zongju Lu, Ph.D.; Harold Bien, M.D., Ph.D.; Huilin Liu, M.S.; Hong-Zhang Wang, Ph.D.; Barbara Rosati, Ph.D.; Peter R. Brink, Ph.D.; and Ira S. Cohen, M.D., Ph.D. Author disclosures and sources of funding are on the manuscript.


Story Source:

The above story is based on materials provided by American Heart Association. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Jia, V. Valiunas, Z. Lu, H. Bien, H. Liu, H.-Z. Wang, B. Rosati, P. R. Brink, I. S. Cohen, E. Entcheva. Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery. Circulation: Arrhythmia and Electrophysiology, 2011; DOI: 10.1161/CIRCEP.111.964247

Cite This Page:

American Heart Association. "Technique to stimulate heart cells may lead to light-controlled pacemakers." ScienceDaily. ScienceDaily, 9 August 2011. <www.sciencedaily.com/releases/2011/08/110808161124.htm>.
American Heart Association. (2011, August 9). Technique to stimulate heart cells may lead to light-controlled pacemakers. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/08/110808161124.htm
American Heart Association. "Technique to stimulate heart cells may lead to light-controlled pacemakers." ScienceDaily. www.sciencedaily.com/releases/2011/08/110808161124.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins