Featured Research

from universities, journals, and other organizations

Escaping gravity's clutches: Information could escape from black holes after all, study suggests

Date:
August 11, 2011
Source:
University of York
Summary:
New research gives a fresh perspective on the physics of black holes. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but a new study suggests that information could escape from black holes after all.

Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but a new study suggests that information could escape from black holes after all.
Credit: iStockphoto

New research by scientists at the University of York gives a fresh perspective on the physics of black holes. Black holes are objects in space that are so massive and compact they were described by Einstein as "bending" space. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but the study by Prof. Samuel Braunstein and Dr. Manas Patra suggests that information could escape from black holes after all.

The implications could be revolutionary, suggesting that gravity may not be a fundamental force of nature.

Prof. Braunstein says: "Our results didn't need the details of a black hole's curved space geometry. That lends support to recent proposals that space, time and even gravity itself may be emergent properties within a deeper theory. Our work subtly changes those proposals, by identifying quantum information theory as the likely candidate for the source of an emergent theory of gravity."

But quantum mechanics is the theory of light and atoms, and many physicists are skeptical that it could be used to explain the slow evaporation of black holes without incorporating the effects of gravity.

The research, which appears in the latest issue of Physical Review Letters, uses the basic tenets of quantum mechanics to give a new description of information leaking from a black hole.

Prof. Braunstein says: "Our results actually extend the predictions made by well-established techniques that rely on a detailed knowledge of space time and black hole geometry."

Dr. Patra adds: "We cannot claim to have proven that escape from a black hole is truly possible, but that is the most straight-forward interpretation of our results. Indeed, our results suggest that quantum information theory will play a key role in a future theory combining quantum mechanics and gravity."


Story Source:

The above story is based on materials provided by University of York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samuel Braunstein, Manas Patra. Black Hole Evaporation Rates without Spacetime. Physical Review Letters, 2011; 107 (7) DOI: 10.1103/PhysRevLett.107.071302

Cite This Page:

University of York. "Escaping gravity's clutches: Information could escape from black holes after all, study suggests." ScienceDaily. ScienceDaily, 11 August 2011. <www.sciencedaily.com/releases/2011/08/110810215342.htm>.
University of York. (2011, August 11). Escaping gravity's clutches: Information could escape from black holes after all, study suggests. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2011/08/110810215342.htm
University of York. "Escaping gravity's clutches: Information could escape from black holes after all, study suggests." ScienceDaily. www.sciencedaily.com/releases/2011/08/110810215342.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins