Featured Research

from universities, journals, and other organizations

Researchers investigate new mechanism for predicting how diseases spread

Date:
September 3, 2011
Source:
Northwestern University
Summary:
Researchers have investigated the outcomes of a previously ignored mechanism in modeling how humans travel. By challenging a long-held assumption, they hope to create models that can more accurately predict the spread of disease and the spread of human-mediated bioinvasions.

Northwestern University professor Dirk Brockmann and his group at the McCormick School of Engineering and Applied Science have investigated the outcomes of a previously ignored mechanism in modeling how humans travel.

Related Articles


By challenging a long-held assumption, Brockmann, associate professor of engineering sciences and applied mathematics, hopes to create models that can more accurately predict the spread of disease and the spread of human-mediated bioinvasions.

"Though there are many sophisticated computer models out there to model mobility patterns, we can now expect significant differences in disease model predictions," Brockmann said.

Their work, done in collaboration with scientists at the Max-Planck Institute for Dynamics and Self-Organization in Gφttingen, Germany and with scientists at the Massachusetts Institute of Technology, was recently published on the first page of the inaugural issue of Physical Review X, a new open-source journal developed by the American Physical Society.

Previous models of how diseases spread made assumptions that human populations are like chemicals being stirred in a container: they interact and travel randomly. Each city is its own container, and when people travel there, they become part of that container.

"Most of the time that's a pretty good assumption," Brockmann said. "But it's not realistic." Most people don't randomly travel from place to place; they travel somewhere, then come back home. Travel again, then come back home.

"They have a base location," Brockmann said. "They don't wander around like a fox in the woods."

Brockmann and his collaborators created a model that used this "base location" assumption and found that it created significant differences in predicting the spread of disease.

A key result was the speed of the disease "wave," or how certain diseases (especially before the advent of air travel) spread in a giant wave across a city or country. It was previously thought that the more people travel, the faster the wave spreads. Now, using this new mechanism, Brockmann has found that the wave actually reaches a maximum speed and then levels off.

"Since you always return home, you don't carry the disease to as many places as we assumed in previous models," he said. "This has been previously overlooked in mathematical epidemiology research."

Brockmann and his group hope to incorporate this new sort of model in realistic models of specific diseases, like the H1N1 influenza, and bioinvasions.

"We've shown this basic mechanism that wasn't known before," he said. "Now we need to see just how it impacts specific diseases."

This research was funded by the Volkswagen Foundation.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vitaly Belik, Theo Geisel, Dirk Brockmann. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases. Physical Review X, 2011; 1 (1) DOI: 10.1103/PhysRevX.1.011001

Cite This Page:

Northwestern University. "Researchers investigate new mechanism for predicting how diseases spread." ScienceDaily. ScienceDaily, 3 September 2011. <www.sciencedaily.com/releases/2011/09/110902133040.htm>.
Northwestern University. (2011, September 3). Researchers investigate new mechanism for predicting how diseases spread. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/09/110902133040.htm
Northwestern University. "Researchers investigate new mechanism for predicting how diseases spread." ScienceDaily. www.sciencedaily.com/releases/2011/09/110902133040.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) — For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) — An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins