Featured Research

from universities, journals, and other organizations

Novel approach scores first success against elusive cancer gene

Date:
September 10, 2011
Source:
Dana-Farber Cancer Institute
Summary:
Researchers successfully disrupted the function of the gene MYC by tampering with the gene's "on" switch and growth signals in multiple myeloma cells, offering promising strategy for treating myeloma and other cancers driven by the MYC gene.

Dana-Farber Cancer Institute scientists have successfully disrupted the function of a cancer gene involved in the formation of most human tumors by tampering with the gene's "on" switch and growth signals, rather than targeting the gene itself. The results, achieved in multiple myeloma cells, offer a promising strategy for treating not only myeloma but also many other cancer types driven by the gene MYC, the study authors say.

Related Articles


Their findings are being published by the journal Cell on its website Sept. 1 and in its Sept. 16 print edition.

"Cancer is a disease of disregulation of growth genes in a cell, and MYC is a master regulator of these genes," says James E. Bradner, MD, of Dana-Farber, one of the study's senior authors. Previous attempts to shut down MYC by inhibiting it directly with drug molecules have been notably unsuccessful. "In this study, our idea was to switch MYC off, interfering with its ability to activate the cell-growth program."

They did so with a small molecule called JQ1, developed by Dana-Farber's Jun Qi, PhD, a co-author of the new study and namesake of JQ1. In multiple myeloma, MYC is hyperactive -- constantly ordering cells to grow and divide -- because it is in the wrong position in the cells' chromosomes. Instead of its normal, quiet neighborhood, MYC finds itself adjacent to a gene known as the immunoglobulin gene. This busy gene is switched on by bits of DNA known as immunoglobulin enhancers, which normally prompt the cell to begin producing disease-fighting antibodies. In myeloma, the immunoglobulin enhancers act on the out-of-place MYC gene like an impatient finger at a doorbell, repeatedly activating it.

Researchers found that the enhancers are loaded with a "bromodomain" protein called BRD4, which, they demonstrate, is used to switch on MYC. Conveniently, it is targeted by JQ1. When investigators added JQ1 to laboratory samples of myeloma cells, the bromodomain proteins fell off the enhancers and the enhancers abruptly stopped working. The result: a shutdown of MYC and a slowdown of cancer cell division.

"In a sense, the JQ1 molecule cuts the cable that activates MYC and also connects MYC to the cell-growth genes," Bradner says. "The signal is interrupted and growth abruptly stops."

When investigators administered JQ1 to laboratory mice harboring myeloma cells, the disease receded and the animals lived longer than those that had not been treated. The study authors emphasize that JQ1 is a protytpe drug and cannot be used immediately to treat myeloma or other cancers. Its success in the current study illuminates the promise of JQ1-based therapies that target bromodomain proteins in cancers dependent on MYC for their growth.

"Together, our findings show that BRD4 has an important role in maintaining MYC activity in myeloma and other blood-related malignancies," says the study's senior author, Constantine Mitsiades, MD, of Dana-Farber. "They also point to the potential usefulness of drug-like bromodomain inhibitors as novel therapies against these diseases."

The study's lead authors are Jake Delmore and Ghayas Issa, MD, Dana-Farber. In addition to Bradner and Qi, the paper's other authors are Hannah Jacobs, Efstathios Kastritis, MD, Timothy Gilpatrick, Ronald Paranal, Anne Schinzel, Michael McKeown, Timothy Heffernan, PhD, Irene Ghobrial, MD, Paul Richardson, MD, William Hahn, MD, PhD, and Kenneth Anderson, MD, Dana-Farber; Andrew Kung, MD, PhD, and Madeleine Lemieux, PhD, Dana-Farber and Children's Hospital Boston; Peter Rahl, PhD, and Richard Young, PhD, Whitehead Institute for Biomedical Research, Cambridge, Mass.; Junwei Shi and Christopher Vakoc, MD, PhD, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; and Marta Chesi, PhD, and P. Leif Bergsagel, MD, Mayo Clinic, Scottsdale, Arizona.

Financial support for the study was provided by the National Institutes of Health, the Chambers Medical Foundation, the Stepanian Fund for Myeloma Research, the Richard J. Corman Foundation, the Burroughs-Wellcome Fund, the Smith Family Award, the American Cancer Society, and the Damon Runyon Cancer Research Foundation.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. JakeE. Delmore, GhayasC. Issa, MadeleineE. Lemieux, PeterB. Rahl, Junwei Shi, HannahM. Jacobs, Efstathios Kastritis, Timothy Gilpatrick, RonaldM. Paranal, Jun Qi, Marta Chesi, AnnaC. Schinzel, MichaelR. McKeown, TimothyP. Heffernan, ChristopherR. Vakoc, P.Leif Bergsagel, IreneM. Ghobrial, PaulG. Richardson, RichardA. Young, WilliamC. Hahn, KennethC. Anderson, AndrewL. Kung, JamesE. Bradner, ConstantineS. Mitsiades. BET Bromodomain Inhibition asa Therapeutic Strategy to Target c-Myc. Cell, 2011; DOI: 10.1016/j.cell.2011.08.017

Cite This Page:

Dana-Farber Cancer Institute. "Novel approach scores first success against elusive cancer gene." ScienceDaily. ScienceDaily, 10 September 2011. <www.sciencedaily.com/releases/2011/09/110909111521.htm>.
Dana-Farber Cancer Institute. (2011, September 10). Novel approach scores first success against elusive cancer gene. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/09/110909111521.htm
Dana-Farber Cancer Institute. "Novel approach scores first success against elusive cancer gene." ScienceDaily. www.sciencedaily.com/releases/2011/09/110909111521.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins