Featured Research

from universities, journals, and other organizations

Civil engineering professor develops 'superlaminate' industrial pipe repair system

Date:
September 13, 2011
Source:
University of Arizona College of Engineering
Summary:
Even when structural problems with the aging US infrastructure can be detected early, currently available methods of repair are often technologically outdated, logistically complex, prohibitively expensive, or all of the above. A professor of civil engineering may have developed a feasible solution to a rapidly growing domestic infrastructure problem.

The catastrophic failure of this 8-foot-diameter Tucson water main in 1999 led to the loss of 38 million gallons of treated water, and costs of $4.3 million. Tucson Water has since implemented a high-tech strategy of prevention and prediction, including acoustic and electromagnetic monitoring, to keep close tabs on its 4,000-plus miles of drinking water mains.
Credit: Image courtesy of University of Arizona College of Engineering

A University of Arizona engineering professor may have a solution to a U.S. infrastructure problem that's growing deadlier each year.

The national Gas Technology Institute (GTI) recently published a test report approving a new technology called PipeMedic that uses carbon and glass laminates to repair and replace failing gas pipelines. GTI is a nonprofit research and development organization serving the natural gas industry.

PipeMedic technology was developed by Mo Ehsani, professor emeritus of civil engineering at the University of Arizona College of Engineering, and a pioneer in the structural application of fiber-reinforced polymers, or FRPs.

Ehsani was a faculty member in the UA department of civil engineering and engineering mechanics for almost 30 years before he left in 2009 to focus on his structural engineering repair business, QuakeWrap, which he founded in 1994. His research at UA had focused on the seismic behavior of structures, and on innovative approaches to repairing and retrofitting civil structures using FRPs.

Ehsani describes PipeMedic as a "superlaminate" because it uses crisscrossing carbon fibers and layers of glass fabric that are saturated with resin, then pressurized and heat-treated to create strips about 0.025 inches thick.

"It works like a stent," Ehsani said. "We coil the laminate around what is essentially a balloon with wheels and insert it into the pipe." The area to be fixed might be 1,000 feet away from the pipe entry point, Ehsani said, which means that pipe can be treated even if it's buried under buildings or roads.

"When the balloon is at the repair area, we pump in air and the laminate unravels and presses against the pipe," he said. "After the epoxy has dried, we deflate the balloon and remove it."

The superlaminates created at Ehsani's production facility in Tucson, Ariz., are shipped in rolls hundreds of feet long, ready for insertion into leaky pipes. The main advantage of Ehsani's laminates over most current methods is that prefabrication enables them to be strength-tested and gives them rigidity. This allows the laminates to be inserted into pipes in cylindrical coil form, which is retained as the balloon presses the laminate against the inside of the pipe.

Currently, most pipe fixes use the "wet lay-up" method, which involves soaking fiber in resin, applying it manually to the problem area, and waiting for it to set, or cure. Precise control is not possible and the strength of the repair cannot be determined until curing is complete, when samples of the cured fiber-resin can be tested to determine whether the fix is up to specification.

Unlike Ehsani's laminates, the wet fiber-resin mix is too squashy to fix large areas. Health and safety are also a problem with wet lay-up because of harmful volatile organic compounds from the resin and associated accelerators and catalysts.

PipeMedic also has the capability to strengthen pipes, culverts and aqueducts made from steel, cast iron, corrugated metal, clay, brick, concrete, and wood. However, the GTI test showed that this superlaminate could actually replace, rather than strengthen, old pipes.

Utility owners are thinking about the next generation of subsurface pipework. Some want to line all new pipe with extra-thick superlaminates, so that when the external pipe eventually fails, the superlaminate becomes the de facto new pipe, but with no new construction.

"Carbon is much too expensive to construct a half-inch thick superlaminate liner that could withstand soil pressures and traffic loads," Ehsani said. "So we have taken a page from the book of the aerospace industry and built a liner using an internal honeycomb structure." This product, called StifPipe, is already in use in a rain catchment system in Brooklyn Bridge Park in New York.


Story Source:

The above story is based on materials provided by University of Arizona College of Engineering. Note: Materials may be edited for content and length.


Cite This Page:

University of Arizona College of Engineering. "Civil engineering professor develops 'superlaminate' industrial pipe repair system." ScienceDaily. ScienceDaily, 13 September 2011. <www.sciencedaily.com/releases/2011/09/110913103056.htm>.
University of Arizona College of Engineering. (2011, September 13). Civil engineering professor develops 'superlaminate' industrial pipe repair system. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/09/110913103056.htm
University of Arizona College of Engineering. "Civil engineering professor develops 'superlaminate' industrial pipe repair system." ScienceDaily. www.sciencedaily.com/releases/2011/09/110913103056.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins