Featured Research

from universities, journals, and other organizations

Radiation boost for artificial joints

Date:
September 22, 2011
Source:
Inderscience Publishers
Summary:
A blast of gamma radiation could toughen up plastic prosthetic joints to make them strong enough to last for years, according to researchers.

A blast of gamma radiation could toughen up plastic prosthetic joints to make them strong enough to last for years, according to researchers in China writing in the current issue of the International Journal of Biomedical Engineering and Technology.

Whole joint replacement, such as hip and knee replacement, commonly use stainless steel, titanium alloys or ceramics to replace the damaged or diseased bone of the joint. Non-stick polymer or nylon is usually used to coat the artificial joint to simulate the cartilage. However, none of these materials are ideal as they produce debris within the body as the joint is used, which leads to inflammation, pain and other problems.

Now, Maoquan Xue of the Changzhou Institute of Light Industry Technology, has investigated the effect of adding ceramic particles and fibers to two experimental materials for coating prosthetic joints, UHMWPE (ultra-high-molecular-weight polyethylene) and PEEK (polyether ether ketone). Alone neither UHMWPE nor PEEK is suitable as a prosthetic cartilage materials because both crack and fracture with the kind of everyday stresses that a hip or knee joint would exert on them. The problem is that the long polymer chains within the material can readily propagate applied forces causing tiny fractures to grow quickly and the material to fail.

Xue has now demonstrated that by adding ceramic particles to the polymers and then blasting the composite with a short burst of gamma-radiation it is possible to break the main polymer chains without disrupting the overall structure of the artificial cartilage. There is then no way for microscopic fractures to be propagated throughout the material because there are no long stretches of polymer to carry the force from one point to the next. The resulting treated material is thus much tougher than the polymer alone and will not produce the problematic debris within a joint that might otherwise lead to inflammation and pain for the patient.

Xue adds that the treated composite materials might also be more biocompatible and so less likely to be rejected by the patient's immune system on implantation. He suggests that the particular structure of the composites would also be receptive to addition of bone-generating cells, osteocytes or stem cells, that could help a prosthetic joint be incorporated more naturally into the body.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maoquan Xue. Research on polymer composites of replacement prostheses. International Journal of Biomedical Engineering and Technology, 2011; 7 (1): 18 DOI: 10.1504/IJBET.2011.042495

Cite This Page:

Inderscience Publishers. "Radiation boost for artificial joints." ScienceDaily. ScienceDaily, 22 September 2011. <www.sciencedaily.com/releases/2011/09/110922134544.htm>.
Inderscience Publishers. (2011, September 22). Radiation boost for artificial joints. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/09/110922134544.htm
Inderscience Publishers. "Radiation boost for artificial joints." ScienceDaily. www.sciencedaily.com/releases/2011/09/110922134544.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins