Featured Research

from universities, journals, and other organizations

Compound kills highly contagious flu strain by activating antiviral protein

Date:
September 26, 2011
Source:
UT Southwestern Medical Center
Summary:
A newly tested compound destroys several viruses, including the deadly Spanish flu that killed an estimated 30 million people in the worldwide pandemic of 1918. This lead compound -- which acts by increasing the levels of a human antiviral protein -- could potentially be developed into a new drug to combat the flu, a virus that tends to mutate into strains resistant to anti-influenza drugs.

A compound tested by UT Southwestern Medical Center investigators destroys several viruses, including the deadly Spanish flu that killed an estimated 30 million people in the worldwide pandemic of 1918.

Related Articles


This lead compound -- which acts by increasing the levels of a human antiviral protein -- could potentially be developed into a new drug to combat the flu, a virus that tends to mutate into strains resistant to anti-influenza drugs.

"The virus is 'smart' enough to bypass inhibitors or vaccines sometimes. Therefore, there is a need for alternative strategies. Current drugs act on the virus, but here we are uplifting a host/human antiviral response at the cellular level," said Dr. Beatriz Fontoura, associate professor of cell biology and senior author of the study available online in Nature Chemical Biology.

According to National Institutes of Health, influenza hospitalizes more than 200,000 people in the U.S. each year, with about 36,000 fatalities related to the illness. Worldwide, flu kills about 500,000 people annually.

In the latest cell testing, the compound successfully knocked out three types of influenza as well as a smallpox-related virus and an animal virus. Because of the highly contagious nature of the 1918 flu, those tests took place at Mount Sinai School of Medicine in New York, one of the few places that stores and runs tests on that flu strain.

The compound is among others that the research team is testing that induce an infection-fighting human protein called REDD1. Until this study, researchers had not demonstrated that REDD1 had this important antiviral function.

"We've discovered that REDD1 is a key human barrier for infection," said Dr. Fontoura, "Interestingly, REDD1 inhibits a signaling pathway that regulates cell proliferation and cancer."

The UT Southwestern-led research team tested 200,000 compounds for those that would inhibit flu virus infection. A total of 71 were identified.

Using the two most promising compounds, researchers at UT Southwestern and colleagues at Mount Sinai next will work to strengthen their potencies for further testing. Dr. Fontoura said it can take more than 10 years before successful compounds are developed into drugs.

UT Southwestern researchers involved in the study were lead author Miguel Mata and Neal Satterly, both graduate students in Dr. Fontoura's laboratory; Dr. Doug Frantz, former assistant professor of biochemistry; Shuguang Wei, a senior researcher in biochemistry; Dr. Noelle Williams, associate professor of biochemistry; Samuel Pena-Llopis, assistant instructor in developmental biology; Dr. James Brugarolas, assistant professor of internal medicine; Dr. Christian Forst, assistant professor of clinical sciences; Dr. Michael White, professor of cell biology; and Dr. Michael Roth, professor of biochemistry.

The research was supported by nine National Institutes of Health grants and by the Diane and Hal Brierley Distinguished Chair Fund.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Miguel A Mata, Neal Satterly, Gijs A Versteeg, Doug Frantz, Shuguang Wei, Noelle Williams, Mirco Schmolke, Samuel Peρa-Llopis, James Brugarolas, Christian V Forst, Michael A White, Adolfo Garcνa-Sastre, Michael G Roth, Beatriz M A Fontoura. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor. Nature Chemical Biology, 2011; 7 (10): 712 DOI: 10.1038/nchembio.645

Cite This Page:

UT Southwestern Medical Center. "Compound kills highly contagious flu strain by activating antiviral protein." ScienceDaily. ScienceDaily, 26 September 2011. <www.sciencedaily.com/releases/2011/09/110926083349.htm>.
UT Southwestern Medical Center. (2011, September 26). Compound kills highly contagious flu strain by activating antiviral protein. ScienceDaily. Retrieved April 2, 2015 from www.sciencedaily.com/releases/2011/09/110926083349.htm
UT Southwestern Medical Center. "Compound kills highly contagious flu strain by activating antiviral protein." ScienceDaily. www.sciencedaily.com/releases/2011/09/110926083349.htm (accessed April 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, April 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) — Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) — The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) — The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins