Featured Research

from universities, journals, and other organizations

Researchers realize high-power, narrowband terahertz source at room temperature

Date:
September 30, 2011
Source:
Northwestern University
Summary:
Researchers have developed a simpler way to generate single-chip terahertz radiation, a discovery that could soon allow for more rapid security screening, border protection, high sensitivity biological/chemical analysis, agricultural inspection, and astronomical applications.

Researchers at Northwestern University have developed a simpler way to generate single-chip terahertz radiation, a discovery that could soon allow for more rapid security screening, border protection, high sensitivity biological/chemical analysis, agricultural inspection, and astronomical applications.

Related Articles


The work, headed by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in the McCormick School of Engineering and Applied Science, was recently published in the journal Applied Physics Letters and was presented in August at the SPIE Optics + Photonics conference in San Diego.

Terahertz radiation (wavelength range of 30 -- 300 microns) can be used to see through paper, clothing, cardboard, plastic, and many other materials, without any of the health risks posed by current x-ray based techniques. This property has become extremely valuable for security screening, as it is safe to use on people and can detect metals and ceramics that might be used as weapons.

In addition, a scanning terahertz source can identify many types of biological or chemical compounds due to their characteristic absorption spectra in this wavelength range. Sensitivity to water content can also be utilized to study agricultural quality. Finally, through mixing with a compact coherent terahertz source, very weak terahertz signals from deep space can be detected, which may help scientists understand the formation of the universe.

Coherent terahertz radiation has historically been very difficult to generate, and the search for an easy-to-use, compact source continues today. Current terahertz sources are large, multi-component systems that may require complex vacuum electronics, external pump lasers, and/or cryogenic cooling. A single component solution without any of these limitations is highly desirable to enable next generation terahertz systems.

One possible avenue toward this goal is to create and mix two mid-infrared laser beams within a single semiconductor chip in the presence of a giant nonlinearity. This nonlinearity allows for new terahertz photons to be created within the same chip with an energy equal to the difference of the mid-infrared lasers' energies. As mid-infrared lasers based on quantum cascade laser technology are operable at room temperature, the terahertz emission can also be demonstrated at room temperature.

Razeghi and her group at the Center for Quantum Devices have taken this basic approach a step further by addressing two key issues that have limited the usefulness of initial demonstrations. Razeghi's group currently leads the world in high-power quantum cascade laser technology; by increasing the power and beam quality of the mid-infrared pumps, the terahertz power has been significantly increased by more than a factor of 30 to ~10 microwatts.

Additionally, the researchers have incorporated a novel dual-wavelength diffraction grating within the laser cavity to create single mode (narrow spectrum) mid-infrared sources, which in turn has led to very narrow linewidth terahertz emission near 4 terahertz. Further, due to the novel generation mechanism, the terahertz spectrum is extremely stable with respect to current and/or temperature. This could make it valuable as a local oscillator, which can be used for low light level receivers like those needed for astronomical applications.

Razeghi said her group will continue in hopes of reaching higher power levels.

"Our goal is to reach milliwatt power levels and incorporate tuning within the device," Razeghi said. "Theory says that it is possible, and we have all of the tools necessary to realize this potential."

Razeghi's work in this area is partially supported by the Defense Advanced Research Projects Agency (DARPA), and she would like to acknowledge the interest and support of Dr. Scott Rodgers of DARPA and Dr. Tariq Manzur of the Naval Undersea Warfare Center


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi. Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers. Applied Physics Letters, 2011; 99 (13): 131106 DOI: 10.1063/1.3645016

Cite This Page:

Northwestern University. "Researchers realize high-power, narrowband terahertz source at room temperature." ScienceDaily. ScienceDaily, 30 September 2011. <www.sciencedaily.com/releases/2011/09/110930123052.htm>.
Northwestern University. (2011, September 30). Researchers realize high-power, narrowband terahertz source at room temperature. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2011/09/110930123052.htm
Northwestern University. "Researchers realize high-power, narrowband terahertz source at room temperature." ScienceDaily. www.sciencedaily.com/releases/2011/09/110930123052.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MINI Shows Off Augmented Reality Glasses

MINI Shows Off Augmented Reality Glasses

AP (Apr. 24, 2015) — MINI showcased its new augmented reality glasses at the Shanghai Auto Show this week, which designers say will make roads safer and allow the driver to see through opaque parts of the car. (April 24) Video provided by AP
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins