Featured Research

from universities, journals, and other organizations

Impediment to some cancer immunotherapy involves the free radical peroxynitrite

Date:
September 30, 2011
Source:
H. Lee Moffitt Cancer Center & Research Institute
Summary:
Researchers have found that tumor cell resistance to a specific cancer immunotherapy designed to kill cancer cells can be blamed on a mechanism that involves the production of a free radical peroxynitrite that causes resistance to therapeutic cancer-killing cells.

Researchers at the Moffitt Cancer Center in Tampa, Fla., and colleagues have found that tumor cell resistance to a specific cancer immunotherapy designed to kill cancer cells can be blamed on a mechanism that involves the production of a free radical peroxynitrite (PNT) that causes resistance to therapeutic cancer-killing cells.

Related Articles


The study, by Moffitt investigators and colleagues at the Dartmouth Medical School, University of Nebraska Medical Center, and the Research Center for Medical Studies, Moscow, Russia, is published in the recent issue of The Journal of Clinical Investigation.

According to lead author, Dmitry Gabrilovich, M.D., Ph.D., senior member of the Moffitt Department of Immunology, the researchers found that myeloid cells can infiltrate tumor sites and modify cytotoxic T-cell (CTL) responses in many patients.

"We set out to investigate one possible explanation for the failure of CTLs to eliminate tumors," said Gabrilovich. "We found that therapeutic failure was the result of the presence of the free radical peroyxnitrite, or PNT."

Gabrilovich and his colleagues focus much of their research on gaining a better understanding about how tumors develop ways to avoid recognition by the immune system, as well as how mechanisms of tumor-associated immunosuppression have an effect on the development and effectiveness of cancer vaccines. In particular, they examine how myeloid cells lose their ability to mature, become functionally defective, and acquire the ability to suppress immune response.

As a further step in their continuing work, in this study the researchers demonstrated that in mouse models of cancer, myeloid-derived suppressor cells (MDSCs) infiltrating the tumor became a source for PNT, the cause of resistance.

"The results suggest that PNT might be affecting the binding of specific peptides," said Gabrilovich. "The data suggests that PNT affects the formation of certain peptide complexes, preventing the CTL's killing of tumor cells."

The researchers next investigated the source of PNT in the tumor microenvironment that could prevent CTL from binding to target tumor cells. They examined tumor tissues from several types of cancers -- including lung, breast and pancreatic cancers -- and began looking for sites of PNT production in the tumor cells by staining the tissues using nitrotyrosine (NT), known to be a marker for PNT activity.

"In each type of tumor, NT staining was significantly higher in myeloid cells than in tumor cells or epithelial cells," explained Gabrilovich. "The data suggests that these cells are the major source of PNT and tumor cell resistance to CTLs."

According to Gabrilovich, their research suggests that tumors could "escape" immune control even if potent CTL responses against tumor-associated antigens were generated by vaccines, checkpoint inhibitors, or tumor infiltrating or genetically modified T cells.

"This research also suggests that this escape can be diminished by blocking PNT production by using pharmacological inhibitors," concluded Gabrilovich.


Story Source:

The above story is based on materials provided by H. Lee Moffitt Cancer Center & Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tangying Lu, Rupal Ramakrishnan, Soner Altiok, Je-In Youn, Pingyan Cheng, Esteban Celis, Vladimir Pisarev, Simon Sherman, Michael B. Sporn, Dmitry Gabrilovich. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI45862

Cite This Page:

H. Lee Moffitt Cancer Center & Research Institute. "Impediment to some cancer immunotherapy involves the free radical peroxynitrite." ScienceDaily. ScienceDaily, 30 September 2011. <www.sciencedaily.com/releases/2011/09/110930195137.htm>.
H. Lee Moffitt Cancer Center & Research Institute. (2011, September 30). Impediment to some cancer immunotherapy involves the free radical peroxynitrite. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2011/09/110930195137.htm
H. Lee Moffitt Cancer Center & Research Institute. "Impediment to some cancer immunotherapy involves the free radical peroxynitrite." ScienceDaily. www.sciencedaily.com/releases/2011/09/110930195137.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins