Featured Research

from universities, journals, and other organizations

Laser polishes components to a high-gloss finish

Date:
October 29, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
At present, components used in areas such as tool and die making generally have to be painstakingly polished by hand -- but a recently developed automated process could soon offer a much faster solution.

At present, components used in areas such as tool and die making generally have to be painstakingly polished by hand -- but a recently developed automated process could soon offer a much faster solution. From Nov. 29 to Dec. 2 at the 2011 EuroMold exhibition in Frankfurt, Fraunhofer researchers will be presenting a machine tool that uses laser polishing to give even complex 3D surfaces a high-gloss finish.

Millimeter by millimeter, the polisher uses grinding stones and polishing pastes to polish the surface of a metal mold, working at a rate of some ten minutes per square centimeter. This activity is time-consuming and hence incurs a significant cost. What is more, many companies are struggling to find new recruits for such a challenging yet monotonous task.

But the era of laborious hand polishing could soon be over: In collaboration with the companies Maschinenfabrik Arnold and S&F Systemtechnik, researchers at the Fraunhofer Institute for Laser Technology ILT have developed a novel type of machine tool which can polish both simple and complex surfaces using laser beams. "Conventional methods remove material from the surface to even it out. Our method is different: It uses a laser to melt a thin surface layer roughly 20 to 100 m deep," says Dr.-Ing. Edgar Willenborg, Section Head at the ILT in Aachen. "Surface tension -- a property that applies to all liquids -- ensures that the layer of liquid metal solidifies evenly."

Depending on the material, the project team can already produce surfaces with an average roughness (Ra) of between 0.1 and 0.4 m. "Hand polishing can still get better results than that," Willenborg admits, "but the point is that in many applications -- for example molds for glass-making, forming and forging tools -- a medium-quality surface is all that is needed." The new machine developed at the Aachen-based ILT has the potential to save considerable amounts of time and money in these areas: The machine polishes surfaces up to ten times faster than a hand polisher and is an excellent option for serial production and for polishing small batches.

The new laser polishing system consists of a 5-axis gantry system plus an additional 3-axis laser scanner, a design that enables the workpiece to be accessed from all sides. Carefully arranged mirrors deflect the laser beam to allow feed rates (the speed at which the laser beam moves along the workpiece within a specified time frame) in excess of one meter a second, even on small surfaces. An end-to-end CAM NC data chain has also been developed which draws on a 3D CAD model of the component to be polished. The beam path data is calculated on the basis of this model. "For this step, we use conventional computer-aided manufacturing (CAM) programs such as those used in milling processes. The advantage is that companies are typically already running those kinds of programs so the employees know how to use them," says Willenborg. The calculated beam path data is then supplied to a special post-processing software program developed at the ILT. This program configures more advanced aspects -- for example adapting the laser to the specific angle of incidence and component edges in each particular case.

This new process technology also offers benefits in terms of machine development: "The fact that we are working with a completely new operating principle makes it much easier to construct the machines we need," Willenborg says. "Unlike conventional polishing techniques, laser polishing does not primarily rely on the rigidity of the machine to achieve high component quality, but rather on the physics of surface tension."

The laser polishing machine will soon be ready for market launch. This year's EuroMold fair is the first time the researchers have presented their new development to the public.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Laser polishes components to a high-gloss finish." ScienceDaily. ScienceDaily, 29 October 2011. <www.sciencedaily.com/releases/2011/10/111005110754.htm>.
Fraunhofer-Gesellschaft. (2011, October 29). Laser polishes components to a high-gloss finish. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/10/111005110754.htm
Fraunhofer-Gesellschaft. "Laser polishes components to a high-gloss finish." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005110754.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins