Featured Research

from universities, journals, and other organizations

Laser polishes components to a high-gloss finish

Date:
October 29, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
At present, components used in areas such as tool and die making generally have to be painstakingly polished by hand -- but a recently developed automated process could soon offer a much faster solution.

At present, components used in areas such as tool and die making generally have to be painstakingly polished by hand -- but a recently developed automated process could soon offer a much faster solution. From Nov. 29 to Dec. 2 at the 2011 EuroMold exhibition in Frankfurt, Fraunhofer researchers will be presenting a machine tool that uses laser polishing to give even complex 3D surfaces a high-gloss finish.

Millimeter by millimeter, the polisher uses grinding stones and polishing pastes to polish the surface of a metal mold, working at a rate of some ten minutes per square centimeter. This activity is time-consuming and hence incurs a significant cost. What is more, many companies are struggling to find new recruits for such a challenging yet monotonous task.

But the era of laborious hand polishing could soon be over: In collaboration with the companies Maschinenfabrik Arnold and S&F Systemtechnik, researchers at the Fraunhofer Institute for Laser Technology ILT have developed a novel type of machine tool which can polish both simple and complex surfaces using laser beams. "Conventional methods remove material from the surface to even it out. Our method is different: It uses a laser to melt a thin surface layer roughly 20 to 100 m deep," says Dr.-Ing. Edgar Willenborg, Section Head at the ILT in Aachen. "Surface tension -- a property that applies to all liquids -- ensures that the layer of liquid metal solidifies evenly."

Depending on the material, the project team can already produce surfaces with an average roughness (Ra) of between 0.1 and 0.4 m. "Hand polishing can still get better results than that," Willenborg admits, "but the point is that in many applications -- for example molds for glass-making, forming and forging tools -- a medium-quality surface is all that is needed." The new machine developed at the Aachen-based ILT has the potential to save considerable amounts of time and money in these areas: The machine polishes surfaces up to ten times faster than a hand polisher and is an excellent option for serial production and for polishing small batches.

The new laser polishing system consists of a 5-axis gantry system plus an additional 3-axis laser scanner, a design that enables the workpiece to be accessed from all sides. Carefully arranged mirrors deflect the laser beam to allow feed rates (the speed at which the laser beam moves along the workpiece within a specified time frame) in excess of one meter a second, even on small surfaces. An end-to-end CAM NC data chain has also been developed which draws on a 3D CAD model of the component to be polished. The beam path data is calculated on the basis of this model. "For this step, we use conventional computer-aided manufacturing (CAM) programs such as those used in milling processes. The advantage is that companies are typically already running those kinds of programs so the employees know how to use them," says Willenborg. The calculated beam path data is then supplied to a special post-processing software program developed at the ILT. This program configures more advanced aspects -- for example adapting the laser to the specific angle of incidence and component edges in each particular case.

This new process technology also offers benefits in terms of machine development: "The fact that we are working with a completely new operating principle makes it much easier to construct the machines we need," Willenborg says. "Unlike conventional polishing techniques, laser polishing does not primarily rely on the rigidity of the machine to achieve high component quality, but rather on the physics of surface tension."

The laser polishing machine will soon be ready for market launch. This year's EuroMold fair is the first time the researchers have presented their new development to the public.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Laser polishes components to a high-gloss finish." ScienceDaily. ScienceDaily, 29 October 2011. <www.sciencedaily.com/releases/2011/10/111005110754.htm>.
Fraunhofer-Gesellschaft. (2011, October 29). Laser polishes components to a high-gloss finish. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/10/111005110754.htm
Fraunhofer-Gesellschaft. "Laser polishes components to a high-gloss finish." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005110754.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins